Skip to main content

Computing Periods\(\ldots \)

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10755))

Included in the following conference series:

Abstract

A period is the difference between the volumes of two semi-algebraic sets. Recent research has located their worst-case complexity in low levels of the Grzegorczyk Hierarchy. The present work introduces, analyzes, and evaluates three rigorous algorithms for rigorously computing periods: a deterministic, a randomized, and a ‘transcendental’ one.

Based on ideas presented at CCA 2017, this work was supported by the National Research Foundation of Korea (grant NRF-2017R1E1A1A03071032) and the International Research & Development Program of the Korean Ministry of Science and ICT (grant NRF-2016K1A3A7A03950702). We thank the anonymous referees for feedback!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course the specific periods \(\pi \) and \(\ln (2)\) admit other, more efficient algorithms.

References

  1. Bailey, D.H.: Jonathan Borwein: experimental mathematician. Exp. Math. 26(2), 125–129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenbrink, P., Czumaj, A., Steger, A., Vöcking, B.: Balanced allocations: the heavily loaded case. SIAM J. Comput. 35(6), 1350–1385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becher, V., Daicz, S., Chaitin, G.: A highly random number. In: Calude, C.S., Dinneen, M.J., Sburlan, S. (eds.) Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science, pp. 55–68. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0717-0_6

    Chapter  Google Scholar 

  4. Brattka, V., Gherardi, G., Hölzl, R.: Las Vegas computability and algorithmic randomness. In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 30, pp. 130–142. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2015)

    Google Scholar 

  5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    MATH  Google Scholar 

  6. Heintz, J., Recio, T., Roy, M.-F.: Algorithms in real algebraic geometry and applications to computational geometry. In: Goodman, J.E., Pollack, R., Steiger, W. (eds.) Discrete and Computational Geometry: Papers from the DIMACS Special Year. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 6, pp. 137–164. DIMACS/AMS (1990)

    Google Scholar 

  7. Kanada, Y.: . J. Math. Cult. 1(1), 72–83 (2003)

    Google Scholar 

  8. Kratsch, D., Fomin, F.V.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    MATH  Google Scholar 

  9. Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991). https://doi.org/10.1007/978-1-4684-6802-1

    Book  MATH  Google Scholar 

  10. Koiran, P.: The real dimension problem is NPR-complete. J. Complex. 15(2), 227–238 (1999)

    Article  MATH  Google Scholar 

  11. Kutylowski, M.: Small Grzegorczyk classes. J. Lond. Math. Soc. 36(2), 193–210 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kontsevich, M., Zagier, D.: Periods. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited – 2001 and Beyond, pp. 771–808. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-319-50926-6_12

    Chapter  Google Scholar 

  13. Meer, K.: Optimization and approximation problems related to polynomial system solving. In: Proceedings of the 2nd Conference on Computability in Europe (CiE 2006), pp. 360–367 (2006)

    Google Scholar 

  14. Mitzenmacher, M., Upfal, E.: Probability and Computing - Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  15. Müller, N.T.: The iRRAM: exact arithmetic in C++. In: Blanck, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45335-0_14

    Chapter  Google Scholar 

  16. Müller, N.T., Ziegler, M.: From calculus to algorithms without errors. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 718–724. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_107

    Google Scholar 

  17. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  18. Popescu-Pampu, P.: What is the Genus?. LNM, vol. 2162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42312-8

    MATH  Google Scholar 

  19. Ritchie, R.W.: Classes of predictably computable functions. Trans. Am. Math. Soc. 106(1), 139–173 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Skordev, D.: On the subrecursive computability of several famous constants. J. Univers. Comput. Sci. 14(6), 861–875 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Skordev, D., Weiermann, A., Georgiev, I.: \(M^2\)-computable real numbers. J. Logic Comput. 22(4), 899–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. Lond. Math. Soc. 42(2), 230–265 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tent, K., Ziegler, M.: Computable functions of reals. Münster J. Math. 3, 43–65 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Viu-Sos, J.: A semi-canonical reduction for periods of Kontsevich-Zagier. arXiv:1509.01097 (2017)

  25. Weihrauch, K.: Computable Analysis. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  26. Yoshinaka, M.: Periods and elementary real numbers. arXiv:0805.0349 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhee Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, J., Park, S., Ziegler, M. (2018). Computing Periods\(\ldots \) . In: Rahman, M., Sung, WK., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2018. Lecture Notes in Computer Science(), vol 10755. Springer, Cham. https://doi.org/10.1007/978-3-319-75172-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75172-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75171-9

  • Online ISBN: 978-3-319-75172-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics