
Operational Concepts of GPU Systems in HPC
Centers: TCO and Productivity

Fabian P. Schneider1 , Sandra Wienke1,2(B) , and Matthias S. Müller1,2

1 IT Center, RWTH Aachen University, 52074 Aachen, Germany
fabian.schneider@rwth-aachen.de, {wienke,mueller}@itc.rwth-aachen.de

2 JARA – High-Performance Computing, 52074 Aachen, Germany

Abstract. Nowadays, numerous supercomputers comprise GPUs due
to promising high performance and memory bandwidth at low power
consumption. With GPUs attached to a host system, applications could
improve their runtime by utilizing both devices. However, this comes
at a cost of increased development effort and system power consump-
tion. In this paper, we compare the total cost of ownership (TCO) and
productivity of different operational concepts of GPU systems in HPC
centers covering various (heterogeneous) program execution models and
CPU-GPU setups. Our investigations include runtime, power consump-
tion, development effort and hardware purchase costs and are exemplified
with two application case studies.

Keywords: TCO · Productivity · Multi-GPU · Operation
Procurement

1 Introduction

Over the last decade, the popularity of GPU-based supercomputers has increased
due to their promising performance per watt ratio. Thus, nowadays, HPC centers
often include GPU-based systems into their considerations for new hardware
acquisitions. However, in tendering and procurement processes, HPC centers face
the challenge to make an informed decision across available operational concepts
of compute nodes with attached GPUs (here called GPU nodes). Operational
concepts can vary in system configuration, i. e., number of CPU sockets and
GPUs within a compute node, and the kind of GPU resource allocation.

The different operational concepts for GPU nodes are also apparent in the
Top500 [21]: Titan (#3 system) deploys per GPU node one NVIDIA Kepler
GPU attached to an AMD Opteron CPU that consists of two NUMA nodes [16].
Tsubame 2.5 (#40 system) employs three NVIDIA Kepler GPUs per (up to) two-
socket Intel Westmere CPU in their GPU nodes. At RWTH Aachen University,
the IT Center provides GPU nodes with either two NVIDIA Kepler or two Pascal
GPUs attached to two-socket Intel CPUs. On all these HPC clusters, batch jobs
are (currently) scheduled exclusively per GPU node [15,20]. However, from our
experiences, users often run applications that are only capable of using a single
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 452–464, 2018.
https://doi.org/10.1007/978-3-319-75178-8_37

http://orcid.org/0000-0001-8069-9728
http://orcid.org/0000-0002-5794-3662
http://orcid.org/0000-0003-2545-5258

Operational Concepts of GPU Systems in HPC Centers 453

GPU per node or do not efficiently run on more than one GPU per node. Other
users only exploit the node’s GPUs and leave the CPUs idling. One main reason
for that is that they cannot or do not want to invest additional effort to leverage
all GPUs and CPU cores within one node. Thus, from an HPC center perspective,
operational concepts that consider single-GPU and multi-GPU nodes must be
compared with respect to their total costs and obtained productivity. In the
multi-GPU node configuration, the capabilities of GPU management in the job
scheduler or virtualization possibilities can further play an important role.

In this paper, we compare different operational setups of GPU nodes with
various program execution models in the context of our university HPC center.
For instance, a GPU node comprising one GPU and one CPU socket executes
either GPU-only or GPU-CPU hybrid programs; a GPU node with two GPUs
and two CPU sockets may additionally run two independent program instances.
We run a full productivity study including the system’s total cost of ownership
(TCO) with hardware costs, energy costs, and development costs for the paral-
lelization of the applications and for further tuning to enable runs on multiple
GPUs within a node. In detail, we investigate the productivity of a Conjugate
Gradient (CG) solver and of a bio-medical real-world application on Intel Sandy
Bridge and Broadwell servers combined with NVIDIA Kepler or Pascal GPUs.

The rest of the paper is structured as follow: Sect. 2 covers related work. In
Sect. 3, we give an overview on the TCO model, derived productivity measure
and corresponding assumptions and quantifications. In Sect. 4, we introduce the
configurations representing our operational concepts of the GPU nodes. The par-
allelization of the CG solver and bio-medical application is described in Sect. 5.
We present our results answering typical questions for GPU node operation in
Sect. 6. Finally, we conclude with a recommendation for procurement in Sect. 7.

2 Related Work

While performance and power consumption of GPUs have been widely investi-
gated in research, operational concepts of GPUs with respect to total costs and
productivity have not been studied so far (to the best of our knowledge). Several
works cover GPU resource management on the level of the operating system or
job scheduler. For example, in [12], a CUDA wrapper library has been manually
implemented to override CUDA device management calls enabling more than
one user per GPU node with the given resource management constraints of the
batch scheduler. Another solution for resource management is based on virtual-
ization of GPUs that has been examined in numerous works. GViM [9] is based
on Xen virtual machines. For decoupling GPUs and CPUs in resource alloca-
tion, the SLURM batch scheduler was extended with a new GPU device type in
[11]. Basis for this remote GPU virtualization is rCUDA [17] that is also used
in a runtime evaluation of different scenarios sharing single GPUs or accessing
them remotely in another compute node [19]. While we focus on simple resource
management strategies, more complex ones could be added later to our model.

TCO and productivity have been mainly studied in the context of the
DARPA HPCS program [5] where most works have been published in a special

454 F. P. Schneider et al.

issue journal [6] and cover (mathematical) models of productivity. These works
only scarcely present quantifications of TCO parameters and do not apply their
models to operational concepts of GPU nodes. In our previous works [24,25],
we showed applicability of our TCO and productivity models to real-world
HPC setups and compared costs per program run of real-world applications for
(a single) GPU setup, CPU setup and Xeon Phi setup including development
efforts [24].

The CG method [10] has been widely studied. A first multi-GPU imple-
mentation is given in [3], which still involved a workaround for double-precision
calculations. Later multi-GPU implementations focus, e. g., on preconditioning
[1], on automatic selection of the fastest of several kernels for the matrix-vector
multiplication [4], or on improving the performance by reordering the matrix
blocks [22]. A performance study of several kernels including CG with hybrid
MPI-CUDA and MPI-OpenMP/CUDA computations is given in [14]. In [13], a
heterogeneous implementation of a finite element method involving a CG algo-
rithm on CPUs and GPU is analyzed aiming at a workload distribution that
gives optimal performance and energy efficiency. However, the authors only use
a single GPU and measure power using internal hardware counters instead of
an external power meter. The CG algorithm newly developed in this work sup-
ports heterogeneous computations involving several CPU sockets and up to two
GPUs. This implementation is highly tuned for our test systems and the struc-
ture of the used matrix, especially with respect to data transfers. Additionally,
a reimplementation allowed us to track the development effort over time.

An algorithm for the bio-medical application and a shared-memory paral-
lelization using OpenMP was developed in [2]. It was further tuned and ported
with OpenCL and OpenACC to NVIDIA Fermi GPUs [26] and with OpenMP to
the Intel Xeon Phi [18] in our previous works. In [24], the application’s OpenMP
and OpenACC implementations were compared with respect to TCO. However,
the analyzed OpenACC implementation only utilized a single GPU and, thus,
did not cover different operational GPU concepts. For our purposes, we devel-
oped a CUDA implementation while tracking development efforts. We tuned
the code for the (newer) hardware supporting multi-GPU and heterogeneous
computations using both the CPU as well as GPU architectures.

3 TCO and Productivity

For the comparison of different operational concepts of GPU nodes, we follow
an integral approach from an HPC center perspective that is based on total
ownership costs and productivity. These models are straightforward and fulfill
all real-world procurement needs.

3.1 Model

Total costs of ownership represent the costs to acquire, operate and maintain
HPC systems. Here, we follow the TCO model that we have created in [24,25].

Operational Concepts of GPU Systems in HPC Centers 455

Basically, we distinguish between one-time costs Cot and costs per anno Cpa

that depend on the number of compute nodes n and the system lifetime τ (e.g.,
5 years) as shown in (1). One-time costs comprise costs for hardware acquisition,
building, infrastructure, operating system (OS) and environment installation,
and development effort needed to parallelize an application for the targeted HPC
system and configuration. Annual costs cover maintenance costs for hardware,
OS, environment and the application, as well as, energy costs and compiler/
software costs. To pay for these costs, HPC centers and institutes usually rely
on federal, state and university funding that provide a fixed investment I so that
an upper bound for total costs is given (see (2)). Using (2) and doing the math,
we can compute the number of nodes n that can be purchased for a given fixed
investment I and given system lifetime τ .

TCO(n, τ) = Cot(n) + Cpa(n) · τ (1)
TCO(n, τ) ≤ I (2)

To make an informed decision in a procurement, we do not only have to
consider TCO but further need to account for the benefit that is gained by
employing the HPC system. This can be done using a productivity metric that
is economically the ratio of unit of outputs to unit of inputs. We use the pro-
ductivity metric that we defined in [25], i. e., we take as value of an HPC system
the number of application runs r(n, τ) that can be executed over the system’s
lifetime. Overall, productivity Ψ can then be expressed as:

Ψ(n, τ) =
value
cost

=
r(n, τ)

TCO(n, τ)
with r(n, τ) =

α · τ

t(n)
(3)

where t(n) represents the application’s runtime and α the system availability
that accounts for downtimes or maintenance periods. While, formally, the runs
of all applications executed on the HPC system should be summed up, we take a
simplified approach here: We assume that only a single application is running for
the whole system lifetime. Furthermore, we ignore any benefits gained through
distributed large-scale runs, since we focus on the differences of operational con-
cepts of GPU nodes. In this context, we investigate applications that run on a
single node, but can be executed simultaneously similar to a parameter study.

3.2 Quantifications

For the application of the introduced TCO and productivity model to a real-
world HPC setup, we make the following assumptions and quantifications based
on our experiences from cluster procurement and operation at the IT Center of
RWTH Aachen University which are also described in detail in [24].

Regarding the one-time costs, we take hardware list prices from our HPC ven-
dors in 2013 and 2017. Building costs get amortized over 25 years and are, thus,
referenced as annual costs here. Development costs are based on the effort spent

456 F. P. Schneider et al.

for parallelizing and tuning the applications under investigation of a single expe-
rienced GPU developer so that effects on effort of varying programming skills
are reduced. The corresponding salary of a full-time equivalent is derived from
the funding guidelines of the German Science Foundation [8] and the European
Commission’s CORDIS [7]. Since our system administrations are experienced in
running GPU clusters and have established an environment that can be easily
rolled out to all nodes, we do not account for any additional environment costs.
However, an implementation of flexible resource management into our LSF job
scheduler is assumed to cost one administrator two person-days.

For the annual costs, we assume administrative costs of 83 ¤ per compute
node. We express the annual building costs with respect to the maximum power
consumption of the given node configuration since the electrical supply is the
limiting factor for housing machinery in the building. For the energy costs, we
take 0.15 ¤/kWh with an estimated PUE of 1.5 in 2013. Furthermore, we divide
both applications into a serial and parallel part. The former is not measured
explicitly but assumed to have a fixed runtime with a power consumption corre-
sponding to one fully-loaded core and the rest of the system idling. The parallel
part corresponds to the actual work of the algorithm which is parallelized accross
the devices. The runtime and power consumption are measured explicitly. As our
systems have each two separate power supplies, the power consumption of both
was measured on separate channels and summed up to obtain the final values.
If the hardware setup contains less than two GPUs or CPU sockets, their idle
power consumption is subtracted from the measured values.

Finally, we assume a fixed investment of 250 000 ¤ from which we compute
the number of nodes n. We set the system lifetime τ to 5 years and the system
usage rate to 80 %.

4 GPU-CPU Configurations

For the comparison of TCO and productivity across different operational con-
cepts of GPU nodes, we take two systems from the RWTH’s compute cluster as
basis from which we derive various GPU-CPU configurations, i. e., the combi-
nations of different amounts of CPU sockets and GPU devices together with a
suitable program execution model:

Kepler: 2 Intel Xeon E5-2680 CPUs @ 2.7 GHz (Sandy Bridge) with 2×8 cores,
2 NVIDIA K20Xm Kepler GPUs

Pascal: 2 Intel Xeon E5-2650 v4 CPUs @ 2.2 GHz (Broadwell) with 2×12 cores,
2 NVIDIA P100 Pascal GPUs.

As notation for the different GPU-CPU configurations, we use tuples of the
form (ng, nc) ∈ {0, 1, 2}2 with ng denoting the number of involved GPUs and nc

the number of involved CPU sockets. This kind of tuple indicates that an exe-
cuted program completely uses the given resources. The tuple (1,1

1,1) specifies the
configuration with two parallel executions of the same application on 1 GPU and
1 CPU each. This configuration represents a job scheduler running two jobs in

Operational Concepts of GPU Systems in HPC Centers 457

Table 1. List of considered configurations

Config. Description Config. Description

(0,2) 2 CPU sockets (2,0/1) 2 GPUs, 1 idling CPU socket

(0/2,2) 2 CPU sockets, 2 idling GPUs (2,0/2) 2 GPUs, 2 idling CPU sockets

(1,0/1) 1 GPU, 1 idling CPU socket (2,2) 2 GPUs + 2 CPU sockets

(1,1) 1 GPU + 1 CPU socket (1,1
1,1

) 2 · (1 GPU + 1 CPU socket)

(1,2) 1 GPU + 2 CPU sockets

parallel on a single node, each given one CPU socket and one GPU. The notation
n′/n indicates that n GPUs or CPU sockets are available but only n′ are used for
program execution, i. e., n−n′ are idling. The purpose of these configurations is
solely for comparison if GPUs are not used at all. All investigated configurations
are summarized in Table 1. In the following, the term device is used as wildcard
for either one GPU or all CPU sockets involved in program execution.

5 Applications

The CG and bio-medical application parallelized with OpenMP and CUDA are
used to evaluate the different configurations. While we highly tuned these appli-
cations for the Kepler system, we have not yet focused on the Pascal architecture
which is left for future work. However, we optimized the ratios for splitting the
computations across the different devices. As common ground of both applica-
tions, we use a parallel first touch on the host to ensure data locality in the main
memory of our cc-NUMA systems and pinned memory to increase the through-
put of memory transfers between host and GPU memory. We apply asynchronous
memory transfers and computations (where applicable) by using streams and
events. Additionally, we hide latency of enqueuing kernels and memory copies
on the GPUs by using separate host threads for the enqueuing operations.

5.1 Conjugate Gradient (CG)

First, we implement a double-precision CG algorithm for solving a linear equa-
tion system A ·x = b [10]. We use the sparse symmetric positive definite Serena1

matrix with n ≈ 1.4 × 106 rows, nnz ≈ 64.1 × 106 non-zeros, and a maximum
of 249 non-zeros per row. To achieve the best data locality and performance on
both device types, the matrix is stored in the compressed row storage format on
the host with a memory footprint of roughly 775 MB, and in the ELLPACK-R
format [23] on the GPUs (yielding 4.19 GB). The vectors have a size of ∼90MB.

On the host side, we use a task-driven approach for the matrix-vector mul-
tiplication with each task computing chunks of equal size. On the GPUs, we
store the multiplication vector in texture memory to reduce the latency of the
1 http://www.cise.ufl.edu/research/sparse/matrices/Janna/Serena.html.

http://www.cise.ufl.edu/research/sparse/matrices/Janna/Serena.html

458 F. P. Schneider et al.

unstructured accesses to this vector. Additionally, we use a Jacobi preconditioner
to reduce the number of iterations in the algorithm until convergence. All opera-
tions of the algorithm are split row-wise across the available devices into disjoint
chunks. Each chunk c contains the row indices Rc such that

⋃
Rc = {1, . . . , n}.

We exploit the matrix structure having most non-zeros close to the diagonal
by minimizing vector data transfers for the matrix vector multiplication: At
the beginning of the algorithm, the minimum and maximum column indices
tmin
c , tmax

c of non-zeros for each chunk c of the matrix are computed. Formally,

tλc = λ({j ∈ {1, . . . , n} | Ai,j �= 0, i ∈ Rc}) for λ ∈ {min,max}
Tc = {tmin

c , tmin
c + 1, . . . , tmax

c − 1, tmax
c } \ Rc

where Tc defines the set of indices of the vector that needs to be transferred to
the device responsible for chunk c.

As our Kepler system does not support direct memory transfers between
GPUs, we increase memory throughput by minimizing the transferred vector
data between GPU and CPU so that additional main memory overheads are
avoided. Thus, for hybrid multi-GPU computations, the first chunk refers to the
first GPU, the middle one to the CPU, and the last chunk to the second GPU.
Our Pascal system supports NVlink between GPUs and, thus, allows fast inter-
GPU memory transfers. Therefore, in future, we will reorder the distribution for
that architecture to take advantage of NVlink.

The analytical determination of the chunk sizes is challenging, as they are
highly affected by the structure of the matrix and we hide some of the latency for
copying the vector by doing it asynchronously to other computations. Thus, to
obtain optimal work chunk distribution across devices, we benchmarked different
values by running the algorithm with a small number of iterations.

The serial part of this algorithm includes reading the matrix file, conversion of
matrix formats, allocation and initialization of vectors, and correctness checking
of results. The time for these operations is assumed to have a fixed value of 20 s.

5.2 Neuromagnetic Inverse Problem (NINA)

The second application solves a real-world problem from the field of bio-medicine,
namely the neuromagnetic inverse problem (NINA). The algorithm was origi-
nally implemented in MATLAB with the three most time-consuming parts com-
puted in C, i. e., an objective function, and its first- and second-order derivatives.
For simplicity, we assume a constant runtime of 46 s for the (serial) MATLAB
part and imitate the original algorithmic optimization process implemented in
MATLAB by executing all kernels one after the other for 1000 times. These
three parts involve matrix vector operations and reductions with a mostly dense
matrix of dimension 128×512 000. This special matrix form hinders the effective
usage of BLAS libraries, so that we had to manually optimize the algorithm.

Our best-effort performance was obtained with one block per row for the
dense matrix vector multiplication. Additionally, we avoid delays by immediately
starting the reduction kernels (per row) out of the multiplication kernels with

Operational Concepts of GPU Systems in HPC Centers 459

dynamic parallelism. To coordinate the GPU computations without interfering
with the other CPU computations, we use a dedicated CPU thread.

All operations are split row-wise across the different devices. As the matrix
is stored in a dense fashion, the computation of every row takes the same time
per device type, resulting in an equal number of rows for each GPU. As for CG,
we used benchmarking to determine the number of rows computed by the CPU.

6 Productivity Results

We interpret our results with respect to typical questions for the operation of
GPU nodes. Results of our runtime and power measurements are shown in Fig. 1
and for the productivity and programming effort in Fig. 2. While runtimes gen-
erally improved when going from Kepler to the Pascal system (without further
tuning), heterogeneous computations involving more than one device do not per-
form well on Pascal. We assume that neglecting available memory bandwidth
given by NVlink is one reason for that. Remember that presented results refer
to 250 000 ¤ of investment. Here, a potential budget increase does not cause any
changes (saturation). If we decrease the budget, the results only change slightly.

Fig. 1. Parallel runtime and power consumption: CG (left), NINA (right)

Fig. 2. Programming effort and productivity: CG (left), NINA (right)

460 F. P. Schneider et al.

Fig. 3. Detailed comparison of configurations

6.1 Cost of Idling Hardware

An interesting question for HPC centers procuring or operating GPU nodes is
the cost or penalty if not all available devices are fully used by developers. For
this investigation, we take as reference the hardware setup containing 2 GPUs
and 2 CPU sockets – which is the default one at RWTH’s compute cluster – and
the execution concept using all of them, i. e., the configuration (2,2).

First, we compare the default configuration to (0/2,2) (cf. Fig. 3a). The idling
GPUs decrease the performance significantly (up to 500 % with NINA on the
Pascal system) but only reduce the power consumption by 10 % to 30 %. Hence,
overall productivity is decreased with 2 idling GPUs by ∼15% with CG and
∼40% with NINA. With the same execution model exploiting only CPUs, but
without any available GPUs in that node (configuration (0,2)), the productivity
obviously increases again compared to (0/2,2) by about 3

4 on Kepler and even
∼230% on Pascal (which is mainly due to omitting the GPU purchase costs).

On the other hand, if both GPUs are used and the CPU sockets are idling
(configuration (2,0/2)) (cf. Fig. 3b), the productivity is hardly affected (changes
are below 3 %). This is because the runtime increases by at most one fourth,
which is compensated by a lower power consumption by about the same factor.

6.2 Multiple (Heterogeneous) Devices

Next, we examine whether extra effort invested into enabling heterogeneous com-
puting with more than one device pays off by additional productivity.

The sheer benefit of exploiting 2 GPUs per node can be investigated by
comparison to the corresponding single-GPU setup – both with idling CPUs, i. e.,

Operational Concepts of GPU Systems in HPC Centers 461

(1,0/1) vs. (2,0/1) (cf. Fig. 3c). Surprisingly, we observe a productivity decrease
with 2 GPUs by ∼20% on the Kepler system, and even 40 % on Pascal. Detailed
examination shows that the (low) improvement in runtime (∼35% on Kepler
and ∼10% on Pascal) cannot compensate for the increase in power consumption
(around one fourth), programming effort, and purchase costs. While we assume
to get better runtime on Pascal when leveraging NVlink, we will not be able to
increase the runtime sufficiently to improve productivity due to the high serial
runtime: e. g., if the assumption holds that 2 GPUs could halve the parallel
runtime, the productivity decrease is still ∼15% on Kepler and ∼35% on Pascal.

As seen in the previous subsection, the productivity does not change much
when adding 2 fully-utilized CPU sockets to 2 GPUs. A similar effect is evi-
dent when adding one fully-utilized CPU socket to one GPU, i. e., (1,0/1) vs.
(1,1) (cf. Fig. 3d): The productivity slightly increases on Kepler (by ∼5%) and
remains about the same on Pascal. To evaluate the worth of buying a two-socket
(single-GPU) node vs. a one-socket (single-GPU) node, we compare the previous
configuration (1,1) to (1,2) where both sockets are utilized (cf. Fig. 3e). Here, we
see a productivity decrease by 13 % to 23 %, which is mainly due to the small
runtime improvement (1 % to 4 %) compared to the higher power consumption
(around 30 % on Kepler and 20 % on Pascal) and higher purchase cost.

6.3 Sharing GPU Nodes

The previous results lead us to the question whether we can increase produc-
tivity by sharing a single node containing 2 GPUs and 2 CPU sockets across
multiple (simultaneous) program executions using disjoint devices (potentially)
by multiple users. One solution for sharing nodes could be implemented based
on the job scheduler’s resource management capabilities for GPUs. We imitate
this solution by running 2 programs in parallel on one node, each using one CPU
socket and one GPU, i. e., configuration (1,1

1,1), and additionally assume further
one-time costs for the administrative adoption of the batch scheduler.

On Kepler, this configuration delivers the highest productivity, as the runtime
is about the same as for configuration (1,1), – which is the configuration with
the second highest productivity – but with two simultaneous program executions
(cf. Fig. 3f). In return, the power consumption increases by only ∼70%, so the
productivity increases by ∼20%. On Pascal, the configuration (0,2) achieves the
highest productivity, i. e., buying and utilizing GPUs at all seem not beneficial
under the reservation that the codes have not been tuned for Pascal GPUs
yet. However, the productivity of the sharing approach (1,1

1,1) is only 10 % lower
with NINA, whereas about 1/3 with CG (cf. Fig. 3g). The reason is the small
runtime improvement (∼80% with NINA, ∼60% with CG) compared to the
much higher power consumption (85 % or 55 %, respectively) and purchase costs.
With further tuning for Pascal, we can probably reach a higher productivity with
the shared approach. Note that effort needed for the adoption of the job scheduler
is assumed to be low. More complex virtualization approaches will yield much
higher one-time costs. Nevertheless, on Kepler, the sharing approach would still
pay off if the administrative effort theoretically increased up to 130 person-days.

462 F. P. Schneider et al.

7 Conclusion

Concluding our productivity results, we give recommendations for hardware pro-
curement choices and GPU system operations for HPC clusters. For this, we
assume that at least one GPU per node should be available and that all clus-
ter nodes have the same hardware setup. We base our suggestions on the case
studies investigated, i. e., a CG solver and the real-world NINA application.

Since productivity decreases when using heterogeneous hardware setups, we
recommend to buy only minimal nodes, containing only one GPU and one CPU
socket. Furthermore, productivity is hardly affected by utilizing the CPU instead
of letting it idle. Hence, it could be up to the programmer, to decide if he utilizes
the CPU or not. Another approach can be taken by purchasing nodes with two
GPUs and two CPU sockets and allow two programs from different users to
exploit distinct devices on the node (e.g., by job scheduler resource management).
In this way, even higher productivity results can be achieved as long as the
additional administrative one-time effort to implement this is not prevailing.

In future, we will evaluate the productivity after tuning the applications for
the Pascal architecture. Early results show a performance improvement of ∼19%
for CG utilizing NVlink in configuration (2, 0). Additionally, we will analyze more
applications, e. g., with lower serial fractions to achieve higher total speedups.
Furthermore, we plan to lift the analysis to applications running across multiple
nodes, i. e., with MPI+OpenMP+CUDA.

References

1. Ament, M., Knittel, G., Weiskopf, D., Strasser, W.: A parallel preconditioned con-
jugate gradient solver for the poisson problem on a multi-GPU platform. In: 2010
18th Euromicro Conference on Parallel, Distributed and Network-Based Process-
ing, pp. 583–592 (2010)

2. Bücker, H., Beucker, R., Rupp, A.: Parallel minimum p-norm solution of the neuro-
magnetic inverse problem for realistic signals using exact Hessian-vector products.
SIAM J. Sci. Comput. 30(6), 2905–2921 (2008)

3. Cevahir, A., Nukada, A., Matsuoka, S.: Fast conjugate gradients with multiple
GPUs. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A. (eds.) ICCS 2009 Part I. LNCS, vol. 5544, pp. 893–903. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01970-8 90

4. Cevahir, A., Nukada, A., Matsuoka, S.: High performance conjugate gradient solver
on multi-GPU clusters using hypergraph partitioning. Comput. Sci.- Res. Dev.
25(1–2), 83–91 (2010)

5. Dongarra, J., Graybill, R., Harrod, W., Lucas, R., Lusk, E., Luszczek, P., Mcma-
hon, J., Snavely, A., Vetter, J., Yelick, K., Alam, S., Campbell, R., Carrington,
L., Chen, T.Y., Khalili, O., Meredith, J., Tikir, M.: DARPA’s HPCS program:
history, models, tools, languages. In: Zelkowitz, M.V. (ed.) Advances in COM-
PUTERS High Performance Computing, vol. 72, pp. 1–100. Elsevier, Amsterdam
(2008)

6. Dongarra, J.J., De Supinski, B.R. (eds.): International Journal of High Performance
Computing Applications, vol. 18, no. 4. Sage Publications (2004)

https://doi.org/10.1007/978-3-642-01970-8_90

Operational Concepts of GPU Systems in HPC Centers 463

7. European Commission - Community Research and Development Information Ser-
vice (CORDIS): Guide to Financial Issues Relating to FP7 Indirect Actions (2014)

8. German Science Foundation (DFG): DFG Personnel Rates for 2017
9. Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., Ran-

ganathan, P.: GViM: GPU-accelerated virtual machines. In: Proceedings of the 3rd
ACM Workshop on System-Level Virtualization for High Performance Computing,
pp. 17–24. ACM (2009). 1519141

10. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. Natl. Bur. Stand. 49, 409–436 (1952)

11. Iserte, S., Castello, A., Mayo, R., Quintana-Orti, E.S., Silla, F., Duato, J., Reano,
C., Prades, J.: SLURM support for remote GPU virtualization: implementation
and performance study. In: 2014 IEEE 26th International Symposium on Computer
Architecture and High Performance Computing, pp. 318–325 (2014)

12. Kindratenko, V.V., Enos, J.J., Shi, G., Showerman, M.T., Arnold, G.W., Stone,
J.E., Phillips, J., Hwu, W.: GPU clusters for high-performance computing. In:
2009 IEEE International Conference on Cluster Computing and Workshops, pp.
1–8 (2009)

13. Lang, J., Rünger, G.: An execution time and energy model for an energy-aware
execution of a conjugate gradient method with CPU/GPU collaboration. J. Parallel
Distrib. Comput. 74(9), 2884–2897 (2014)

14. Lu, F., Song, J., Yin, F., Zhu, X.: Performance evaluation of hybrid programming
patterns for large CPU/GPU heterogeneous clusters. Comput. Phys. Commun.
183(6), 1172–1181 (2012)

15. Oak Ridge National Laboratory: Job Resource Accounting. https://www.olcf.ornl.
gov/support/system-user-guides/titan-user-guide/. Accessed 4 2017

16. Oak Ridge National Laboratory: XK7 (Titan) Node Description. https://www.
olcf.ornl.gov/support/system-user-guides/accelerated-computing-guide. Accessed
4 2017

17. Pena, A.J., Reano, C., Silla, F., Mayo, R., Quintana-Orti, E.S., Duato, J.: A
complete and efficient CUDA-sharing solution for HPC clusters. Parallel Comput.
40(10), 574–588 (2014)

18. Schmidl, D., Cramer, T., Wienke, S., Terboven, C., Müller, M.S.: Assessing the
performance of OpenMP programs on the Intel Xeon Phi. In: Wolf, F., Mohr,
B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 547–558. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40047-6 56

19. Silla, F., Prades, J., Iserte, S., Reano, C.: Remote GPU virtualization: is it useful?
In: 2016 2nd IEEE International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB), pp. 41–48 (2016)

20. The Global Scientific Information and Computing Center (GSIC): TSUBAME 2.5
User’s Guide: User Environment. http://tsubame.gsic.titech.ac.jp/docs/guides/
tsubame2/html en/resources.html. Accessed 4 2017

21. Top500-The List. https://www.top500.org/lists/2016/11/, November 2016
22. Verschoor, M., Jalba, A.C.: Analysis and performance estimation of the Conjugate

Gradient method on multiple GPUs. Parallel Comput. 38(10–11), 552–575 (2012)
23. Vázquez, F., Ortega, G., Fernández, J.J., Garzón, E.M.: Improving the perfor-

mance of the sparse matrix vector product with GPUs. In: 10th IEEE International
Conference on Computer and Information Technology, pp. 1146–1151 (2010)

24. Wienke, S., an Mey, D., Müller, M.S.: Accelerators for technical computing: is
it worth the pain? A TCO perspective. In: Kunkel, J.M., Ludwig, T., Meuer,
H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp. 330–342. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38750-0 25

https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/
https://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/
https://www.olcf.ornl.gov/support/system-user-guides/accelerated-computing-guide
https://www.olcf.ornl.gov/support/system-user-guides/accelerated-computing-guide
https://doi.org/10.1007/978-3-642-40047-6_56
http://tsubame.gsic.titech.ac.jp/docs/guides/tsubame2/html_en/resources.html
http://tsubame.gsic.titech.ac.jp/docs/guides/tsubame2/html_en/resources.html
https://www.top500.org/lists/2016/11/
https://doi.org/10.1007/978-3-642-38750-0_25

464 F. P. Schneider et al.

25. Wienke, S., Iliev, H., an Mey, D., Müller, M.S.: Modeling the productivity of HPC
systems on a computing center scale. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High
Performance 2015. LNCS, vol. 9137, pp. 358–375. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20119-1 26

26. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC—first experiences
with real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32820-6 85

https://doi.org/10.1007/978-3-319-20119-1_26
https://doi.org/10.1007/978-3-319-20119-1_26
https://doi.org/10.1007/978-3-642-32820-6_85

	Operational Concepts of GPU Systems in HPC Centers: TCO and Productivity
	1 Introduction
	2 Related Work
	3 TCO and Productivity
	3.1 Model
	3.2 Quantifications

	4 GPU-CPU Configurations
	5 Applications
	5.1 Conjugate Gradient (CG)
	5.2 Neuromagnetic Inverse Problem (NINA)

	6 Productivity Results
	6.1 Cost of Idling Hardware
	6.2 Multiple (Heterogeneous) Devices
	6.3 Sharing GPU Nodes

	7 Conclusion
	References

