Abstract
Direct Sum Masking (DSM) and Inner Product (IP) masking are two types of countermeasures that have been introduced as alternatives to simpler (e.g., additive) masking schemes to protect cryptographic implementations against side-channel analysis. In this paper, we first show that IP masking can be written as a particular case of DSM. We then analyze the improved security properties that these (more complex) encodings can provide over Boolean masking. For this purpose, we introduce a slight variation of the probing model, which allows us to provide a simple explanation to the “security order amplification” for such masking schemes that was put forward at CARDIS 2016. We then use our model to search for new instances of masking schemes that optimize this security order amplification. We finally discuss the relevance of this security order amplification (and its underlying assumption of linear leakages) based on an experimental case study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the inductive search allows us to find good linear codes with relatively large minimum distance rather quickly. For instance, we can easily obtain a desired [72, 8, 30] linear code by the inductive search with the code length 8n increasing by 16 gradually from 24 to 72. The gap \(\varDelta \) here is only \(-2\). This task takes less than 2 min when using the online Magma calculator, while it is almost intractable by the other two approaches even running on a powerful local Magma server.
- 2.
References
Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald, E., Fischlin, M. (eds.) [30], pp. 486–510. Springer, Heidelberg (2015)
Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_45
Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.: Parallel implementations of masking schemes and the bounded moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) [11], pp. 535–566. Springer, Cham (2017)
Bouyukliev, I., Jaffe, D.B., Vavrek, V.: The smallest length of eight-dimensional binary linear codes with prescribed minimum distance. IEEE Trans. Inf. Theor. 46(4), 1539–1544 (2000)
Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct sum masking - a smartcard friendly computation paradigm in a code, with builtin protection against side-channel and fault attacks. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 40–56. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43826-8_4
Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing of order two. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 120–139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_8
Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing: optimal implementation and security evaluation. J. Math. Cryptol. 8(3), 249–295 (2014)
Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H., Prouff, E.: Achieving side-channel high-order correlation immunity with leakage squeezing. J. Cryptogr. Eng. 4(2), 107–121 (2014)
Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016)
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26
Coron, J.-S., Nielsen, J.B. (eds.): EUROCRYPT 2017. LNCS, vol. 10210. Springer, Cham (2017)
Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_21
Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) [29], pp. 423–440. Springer, Heidelberg (2014)
Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete - or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M. (eds.) [30], pp. 401–429. Springer, Heidelberg (2015)
Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_10
Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) [29], pp. 459–476. Springer, Heidelberg (2014)
Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 702–721. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_38
Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_18
Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_16
Golić, J.D., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski Jr., B.S., Koç, C.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_16
Goubin, L., Martinelli, A.: Protecting AES with Shamir’s secret sharing scheme. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 79–94. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_6
Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In: Coron, J.S., Nielsen, J. (eds.) [11], pp. 567–597. Springer, Cham (2017)
Grassl, M.: Tables of linear codes and quantum codes (2015). http://www.codetables.de/. Accessed 25 Apr 2017
Griesmer, J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4(5), 532–542 (1960)
Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked S-boxes processing – a step forward –. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 251–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_16
Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_3
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications. Advanced Book Program/World Science Division. Addison-Wesley Publishing Company, Boston (1983)
Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer, Heidelberg (2014)
Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015. LNCS, vol. 9056. Springer, Heidelberg (2015)
Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_9
Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_28
Roche, T., Prouff, E.: Higher-order glitch free implementation of the AES using secure multi-party computation protocols - extended version. J. Cryptogr. Eng. 2(2), 111–127 (2012)
Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3
Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J. Cryptogr. Eng. 6(2), 85–99 (2016)
Standaert, F.-X.: How (not) to use welch’s t-test in side-channel security evaluations. IACR Cryptology ePrint Archive, 2017, p. 138 (2017)
van Tilborg Henk, C.A.: The smallest length of binary 7-dimensional linear codes with prescribed minimum distance. Discrete Math. 33(2), 197–207 (1981)
Wang, W., Standaert, F.-X., Yu, Y., Pu, S., Liu, J., Guo, Z., Gu, D.: Inner product masking for bitslice ciphers and security order amplification for linear leakages. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 174–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8_11
Acknowledgements
François-Xavier Standaert is a research associate of the Belgian Fund for Scientific Research. This work has been funded in parts by the European Commission through the H2020 project 731591 (acronym REASSURE), the CHIST-ERA project SECODE and the ERC project 724725 (acronym SWORD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Poussier, R., Guo, Q., Standaert, FX., Carlet, C., Guilley, S. (2018). Connecting and Improving Direct Sum Masking and Inner Product Masking. In: Eisenbarth, T., Teglia, Y. (eds) Smart Card Research and Advanced Applications. CARDIS 2017. Lecture Notes in Computer Science(), vol 10728. Springer, Cham. https://doi.org/10.1007/978-3-319-75208-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-75208-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75207-5
Online ISBN: 978-3-319-75208-2
eBook Packages: Computer ScienceComputer Science (R0)