Abstract
In this paper, we propose a fast automatic method that segments white matter hyperintensities (WMH) in 3D brain MR images, using a fully convolutional network (FCN) and transfer learning. This FCN is the Visual Geometry Group neural network (VGG for short) pre-trained on ImageNet for natural image classification, and fine tuned with the training dataset of the MICCAI WMH Challenge. We consider three images for each slice of the volume to segment: the T1 slice, the FLAIR slice, and the result of a morphological operator that emphasizes small bright structures. These three 2D images are assembled to form a 2D color image, that inputs the FCN to obtain the 2D segmentation of the corresponding slice. We process all slices, and stack the results to form the 3D output segmentation. With such a technique, the segmentation of WMH on a 3D brain volume takes about 10 s including pre-processing. Our technique was ranked 6-th over 20 participants at the MICCAI WMH Challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Caligiuri, M.E., Perrotta, P., Augimeri, A., Rocca, F., Quattrone, A., Cherubini, A.: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review. Neuroinformatics 13(3), 261–276 (2015)
Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)
Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE (1994)
García-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L.: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med. Image Anal. 17(1), 1–18 (2013)
Ghafoorian, M., Karssemeijer, N., Heskes, T., van Uden, I.W., Sanchez, C.I., Litjens, G., de Leeuw, F.E., van Ginneken, B., Marchiori, E., Platel, B.: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci. Rep. 7, 5110 (2017)
Ghafoorian, M., Mehrtash, A., Kapur, T., Karssemeijer, N., Marchiori, E., Pesteie, M., Guttmann, C.R.G., de Leeuw, F.-E., Tempany, C.M., van Ginneken, B., Fedorov, A., Abolmaesumi, P., Platel, B., Wells, W.M.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017, Part III. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59
Jack, C.R., O’Brien, P.C., Rettman, D.W., Shiung, M.M., Xu, Y., Muthupillai, R., Manduca, A., Avula, R., Erickson, B.J.: FLAIR histogram segmentation for measurement of leukoaraiosis volume. J. Magn. Reson. Imaging 14(6), 668–676 (2001)
Jones, R.: Component trees for image filtering and segmentation. In: Coyle, E. (ed.) Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing, Mackinac Island (1997)
Khayati, R., Vafadust, M., Towhidkhah, F., Nabavi, M.: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput. Biol. Med. 38(3), 379–390 (2008)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Lazzara, G., Géraud, T., Levillain, R.: Planting, growing and pruning trees: Connected filters applied to document image analysis. In: Proceedings of the 11th IAPR International Workshop on Document Analysis Systems (DAS), Tours, France, pp. 36–40 (2014)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016, Part II. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_17
Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)
Morel, B., Xu, Y., Virzi, A., Géraud, T., Adamsbaum, C., Bloch, I.: A challenging issue: detection of white matter hyperintensities on neonatal brain MRI. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 93–96 (2016)
Pantoni, L.: Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 9(7), 689–701 (2010)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)
Salembier, P., Serra, J.: Flat zones filtering, connected operators and filters by reconstruction. IEEE Trans. Image Process. 3(8), 1153–1160 (1995)
Salembier, P., Wilkinson, M.H.: Connected operators. IEEE Signal Process. Mag. 26(6), 136–157 (2009)
Schwarz, C., Fletcher, E., DeCarli, C., Carmichael, O.: Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. Inf. Process. Med. Imaging 21, 239–251 (2009)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Vincent, L.: Grayscale area openings and closings, their efficient implementation and applications. In: Proceedings of the EURASIP 1st Workshop on Mathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, pp. 22–27, May 1993
Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., Lindley, R.I., O’Brien, J.T., Barkhof, F., Benavente, O.R., et al.: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12(8), 822–838 (2013)
Xu, Y., Géraud, T., Bloch, I.: From neonatal to adult brain MR image segmentation in a few seconds using 3D-like fully convolutional network and transfer learning. In: Proceedings of the 23rd IEEE International Conference on Image Processing (ICIP), Beijing, China pp. 4417–4421, September 2017. http://www.lrde.epita.fr/~theo/papers/geraud.2017.icip.pdf
Acknowledgments
The authors want to thank the organizers of the White Matter Hyperintensities Segmentation Challenge at MICCAI 2017, and the reviewers for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Xu, Y., Géraud, T., Puybareau, É., Bloch, I., Chazalon, J. (2018). White Matter Hyperintensities Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-75238-9_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75237-2
Online ISBN: 978-3-319-75238-9
eBook Packages: Computer ScienceComputer Science (R0)