Skip to main content

A Category of “Undirected Graphs”

A Tribute to Hartmut Ehrig

  • Chapter
  • First Online:
Graph Transformation, Specifications, and Nets

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10800))

Abstract

In this paper, a category of undirected graphs is introduced where the morphisms are chosen in the style of mathematical graph theory rather than as algebraic structures as is more usual in the area of graph transformation.

A representative function, \({\omega }\), within this category is presented. Its inverse, \({\omega }^{-1}\), is defined in terms of a graph grammar, \({\varepsilon }\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The codomain \(2^{V'}\) of f need not be \(2^V\), and its edge set \(E'\) need not have the same structure as E. Therefore, elements of the codomain are denoted with a prime.

  2. 2.

    We use suffix notation to denote the application of set-valued operators and functions.

  3. 3.

    This is a common terminology, but unfortunately such “closed neighborhoods” are not “closed”. The intersection of closed sets must be closed, but it easy to show that this is seldom true with “closed neighborhoods”.

  4. 4.

    We modify the usual definition of monotonicity to read: \(X \subseteq Y\) implies \(X.f \subseteq Y.f\), provided .

  5. 5.

    This procedure has been quite effective reducing large graphs \(| V | \ge 1,000\), with at worst 6 iterative sweeps of V.

  6. 6.

    A graph, \(K_n\) is complete if all n nodes are mutually connected by an edge.

  7. 7.

    Because extreme points are simplicial (neighborhood is a clique), and because every chordal graph must have at least two extreme points [8, 9], every chordal graph can be so generated.

References

  1. Arbib, M., Manes, E.: Arrows, Structures, and Functors: The Categorical Imperative. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Castellini, G.: Categorical Closure Operators. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  3. Chvátal, V.: Antimatroids, betweenness, convexity. In: László, W.C., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 57–64. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1_3

    Chapter  Google Scholar 

  4. Edelman, P.H.: Abstract convexity and meet-distributive lattices. In: Combinatorics and Ordered Sets, Arcata, CA, pp. 127–150 (1986)

    Google Scholar 

  5. Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geom. Dedicata 19(3), 247–270 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: an algebraic approach. In: IEEE Conference on SWAT (1973)

    Google Scholar 

  7. Engle, K.: Sperner theory. In: Hazewinkle, M. (ed.) Encyclopedia of Mathematics. Springer, Heidelberg (2001)

    Google Scholar 

  8. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebra Discrete Methods 7(3), 433–444 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. MacLane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-9839-7

    MATH  Google Scholar 

  11. Ore, O.: Mappings of closure relations. Ann. Math. 47(1), 56–72 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pfaltz, J., Šlapal, J.: Transformations of discrete closure systems. Acta Math. Hung. 138(4), 386–405 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pfaltz, J.L.: Neighborhood expansion grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 30–44. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46464-8_3

    Chapter  Google Scholar 

  14. Pfaltz, J.L.: Finding the mule in the network. In: Alhajj, R., Werner, B. (eds.) International Conference on Advances in Social Network Analysis and Mining, ASONAM 2012, Istanbul, Turkey, pp. 667–672, August 2012

    Google Scholar 

  15. Pfaltz, J.L.: Mathematical continuity in dynamic social networks. Soc. Netw. Anal. Min. (SNAM) 3(4), 863–872 (2013)

    Article  MathSciNet  Google Scholar 

  16. Pfaltz, J.L.: The irreducible spine(s) of undirected networks. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013. LNCS, vol. 8181, pp. 104–117. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41154-0_8

    Chapter  Google Scholar 

  17. Pfaltz, J.L.: Computational processes that appear to model human memory. In: Figueiredo, D., Martín-Vide, C., Pratas, D., Vega-Rodríguez, M.A. (eds.) AlCoB 2017. LNCS, vol. 10252, pp. 85–99. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58163-7_6

    Chapter  Google Scholar 

  18. Pierce, B.C.: Basic Category Theory for Computer Scientists. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  19. Rozenberg, G. (ed.): The Handbook of Graph Grammars. World Scientific, Singapore (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Pfaltz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfaltz, J.L. (2018). A Category of “Undirected Graphs”. In: Heckel, R., Taentzer, G. (eds) Graph Transformation, Specifications, and Nets. Lecture Notes in Computer Science(), vol 10800. Springer, Cham. https://doi.org/10.1007/978-3-319-75396-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75396-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75395-9

  • Online ISBN: 978-3-319-75396-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics