Skip to main content

Load Frequency Control of Hydro-Hydro System with Fuzzy Logic Controller Considering Non-linearity

  • Chapter
  • First Online:
Recent Developments and the New Direction in Soft-Computing Foundations and Applications

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 361))

Abstract

The current work handles Automatic Generation Control (AGC) of an interconnected two area hydro-hydro system. The proposed system is integrated with conventional Proportional Integral (PI) as well as Fuzzy Logic Controller (FLC). Since, the conventional PI controller does not offer sufficient control performance. Thus, non-linearities such as the Generation Rate Constraint (GRC) and Governor Dead Band (GDB) are included in the system in order to overcome this drawback with employing Fuzzy Logic Controller (FLC) in the system. The results reported the time domain simulation that used to study the performance, when 1% step load disturbance is given in either area of the system. Furthermore, the conventional PI controller simulation results are compared to fuzzy logic controller. The simulation results depicted that the FLC achieved superior control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Δ:

Deviation

i:

Subscript referred to area (1, 2)

f:

Nominal system frequency

Kpi:

Gain constant of generator

Tpi:

Time constant of a generator

Pri:

Rated area power

T1, T3:

Time constants of hydro governor

T2:

Mechanical governor reset time constant

Tw:

Water starting time

Kdc:

Gain associated with dc link

Tdc:

Time constant of dc link

T12:

Synchronizing coefficient

Ptie:

Tie line power

Pdi:

Load disturbance

Ri:

Governor speed regulation parameter

Bi:

Frequency bias constant

KP:

Proportional controller gain

Ki:

Integral controller gain

a12:

Pr1/Pr2

ACE:

Area Control Error

LFC:

Load Frequency Control

J:

Cost index

T:

Sampling time period

References

  1. O.I. Elgerd, Electric Energy Systems Theory: An Introduction (Mc-Graw Hill, New York, 1983)

    Google Scholar 

  2. J. Nanda, A. Mangla, S. Suri, Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers. IEEE Trans. Energy Convers. 21(1), 187–193 (2006)

    Article  Google Scholar 

  3. J. Nanda, A. Mangla, Automatic generation control of an interconnected hydro-thermal system using conventional Integral and fuzzy logic controller, in 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (Hongkong, Apr 2004), pp. 372–377

    Google Scholar 

  4. S.C. Tripathy, R. Balasubramanian, P.S.C. Nair, Effect of superconducting magnetic energy storage on automatic generation control considering governor deadband and boiler dynamics. IEEE Trans. Power Syst. 7(3), 1266–1272 (1992)

    Article  Google Scholar 

  5. IEEE Committee Report, Dynamic models for steam and hydro turbines in power system studies. IEEE Trans. Power Apparat. Syst. 92(4), 1904–1911 (1973)

    Google Scholar 

  6. K. Jagatheesan, B. Anand, N. Dey, Automatic generation control of thermal-thermal-hydro power systems with PID controller using ant colony optimization. Int. J. Serv. Sci. Manage. Eng. Technol. 6(2), 18–34 (2015)

    Google Scholar 

  7. K. Jagatheesan, B. Anand, N. Dey, A.S. Ashour, Ant colony optimization algorithm based PID controller for LFC of single area power system with non-linearity and boiler dynamics. World J. Model. Simul. 12(1), 3–14 (2016)

    Google Scholar 

  8. K. Jagatheesan, B. Anand, B. Sourav Samanta, N. Dey, V. Santhi, A.S. Ashiur, V.E. Balas, Application of flower pollination algorithm in load frequency control of multi-area interconnected power system with non-linearity. Neural Comput. Appl. 1–14 (2016)

    Google Scholar 

  9. K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A.S. Ashour, V.E. Balas, H. He, Design of proportional-integral-derivative controller for AGC of multi-area power thermal systems using firefly algorithm. IEEE/CAA J. Autom. Sinica (2016) (Accepted for Publication)

    Google Scholar 

  10. K. Jagatheesan, B. Anand, AGC of multi-area hydro-thermal power systems with GRC non-linearity and classical controller. J. Global Inf. Manage. (2016) (Accepted for Publication)

    Google Scholar 

  11. K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A.S. Ashour, V.E. Balas, Particle swarm optimization based parameters optimization of PID controller for load frequency control of multi-area reheat thermal power systems. Int. J. Artif. Paradigm (2016) (Accepted for Publication)

    Google Scholar 

  12. K. Jagatheesan, B. Anand, N. Dey, A.S. Ashour, V.E. Balas, Conventional controller based AGC of multi-area Hydro-Thermal power systems, in Proceedings of 2016 International Conference on Computer Communication and Informatics (ICCCI-2016) (Coimbatore, India, 7–9 Jan 2016), pp. 560–565

    Google Scholar 

  13. K. Jagatheesan, B. Anand, V. Santhi, N. Dey, A.S. Ashour, V.E. Balas, Dynamic performance analysis of AGC of multi-area power system considering proportional-integral-derivative controller with different cost functions, in Proceeding of IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)-2016 (DMI College of Engineering, Chennai, Tamilnadu, 3–5 Mar 2016)

    Google Scholar 

  14. N. Cohn, Some aspects of tie-line bias control on interconnected power systems. AIEE Trans. 75, 1415–1436 (1957)

    Google Scholar 

  15. K.C. Divya, P.S.N. Rao, A simulation model for AGC studies of hydro-hydro systems. Electr. Power Energy Syst. 27, 335–342 (2005)

    Article  Google Scholar 

  16. S.C. Tripathy, T.S. Bhatti, C.S. Jha, O.P. Malik, G.S. Hope, Sampled data automatic generation control analysis with reheat steam turbines and governor dead-band effects. IEEE Trans. Power Apparat. Syst. PAS-103(5) May 1984

    Article  Google Scholar 

  17. M.F. Hossain, T. Takahashi, M.G. Rabbani, M.R.I. Sheikh, M.S. Anower, Fuzzy-proportional integral controller for an AGC in a single area power system, in Fourth International Conference on Electrical and Computer Engineering ICECE 2006 (Dhaka, Bangladesh, 19–21 Dec 2006)

    Google Scholar 

  18. D. Das, J. Nanda, M.L. Kothari, D.P. Kothari, Automatic generation control of a hydrothermal system with new area control error considering generation rate constraint. Electr. Mach. Power Syst. 18, 461 (1990)

    Article  Google Scholar 

  19. M.E. Baydokhty, A. Zare, S. baochian, Performance of optimal hierarchical type 2 fuzzy controller for load-frequency system with production rate limitation and governor dead band. Alexndraia Eng. J. (2016) (Article in Press)

    Google Scholar 

  20. R.E. Precup, S. Preitl, M. Bălas, V. Bălaş, Fuzzy controllers for tire slip control in anti-lock braking systems, in 2004 IEEE Proceedings, International Conference on Fuzzy Systems, vol. 3 (2004), pp. 1317–1322

    Google Scholar 

  21. I. Filip, O. Prostean, I. Szeidert, V. Balas, G. Prostean, Adaptive fuzzy controller and adaptive self-tuning controller: comparative analysis for the excitation control of a synchronous generator, in 7th WSEAS International Conference on Automation and Information (ICAI’06) (Cavtat, Croatia, 2006), pp. 89–94

    Google Scholar 

  22. M. Madic, D. Markovic, M. Radovanovic, Performance comparison of meta-heuristic algorithms for training artificial neural networks in modeling laser cutting. Int. J. Adv. Intell. Paradigms 2(4), 316–335 (2012)

    Google Scholar 

  23. E. Yesil, Interval type-2 fuzzy PID load frequency controller using big bang-big crunch optimization. Appl. Soft Comput. 15, 100–112 (2014)

    Article  Google Scholar 

  24. H. Bevrani, P.R. Daneshmand, Fuzzy logic-based load-frequency control concerning high penetration of wind turbines. IEEE Syst. J. 6(1), 173–180 (2012)

    Article  Google Scholar 

  25. S. Tyagi, K.l.K. Bharadwaj, A particle swarm optimization approach to fuzzy case-based reasoning in the framework of collaborative filtering. Int. J. Rough Sets Data Anal. (IJRSDA) 1(1), 48–64 (2014)

    Article  Google Scholar 

  26. H.A. Yousef, K.A.L. Kharusi, M.H. Albadi, N. Hosseinzadeh, Load frequency control of a multi-area power system: an adaptive fuzzy logic approach. IEEE Trans. Power Syst. 29(4), 1822–1830 (2014)

    Article  Google Scholar 

  27. N.A. Setiawan, Fuzzy decision support system for coronary artery disease diagnosis based on rough set theory. Int. J. Rough Sets Data Anal. (IJRSDA) 1(1), 65–80 (2014)

    Article  MathSciNet  Google Scholar 

  28. N.A. Mhetre, A.V. Deshpande, P.N. Mahalle, Trust management model based on fuzzy approach for ubiquitous computing. Int. J. Ambient Comput. Intell. (IJACI) 7(2), 33–46 (2016)

    Article  Google Scholar 

  29. V. Bureš, P. Tučník, P. Mikulecký, K. Mls, P. Blecha, Application of ambient intelligence in educational institutions: visions and architecture. Int. J. Ambient Comput. Intell. (IJACI) 7(1), 94–120 (2016)

    Article  Google Scholar 

  30. S. Bersch, D. Azzi, R. Khusainov, I.E. Achumba, Artificial immune systems for anomaly detection in ambient assisted living applications. Int. J. Ambient Comput. Intell. (IJACI) 5(3), 1–15 (2013)

    Article  Google Scholar 

  31. T.J. Ross, Fuzzy Logic with Engineering Applications (Wiley, England, 2004)

    MATH  Google Scholar 

  32. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  33. G.A. Chown, R.C. Hartman, Design and experience with a fuzzy logic controller for automatic generation control. IEEE Trans. Power Syst. 13(3), 965–970 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagatheesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagatheesan, K., Anand, B., Dey, N., Ashour, A.S., Balas, V.E. (2018). Load Frequency Control of Hydro-Hydro System with Fuzzy Logic Controller Considering Non-linearity. In: Zadeh, L., Yager, R., Shahbazova, S., Reformat, M., Kreinovich, V. (eds) Recent Developments and the New Direction in Soft-Computing Foundations and Applications. Studies in Fuzziness and Soft Computing, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-319-75408-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75408-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75407-9

  • Online ISBN: 978-3-319-75408-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics