Skip to main content

Feature-Based Image Compression

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10751))

Included in the following conference series:

  • 3274 Accesses

Abstract

The EyeDee™ embedded eye tracking solution developed by SuriCog is the world’s first innovative solution using the eye as a real-time mobile digital cursor, while maintaining full mobility. The system consists in a wearable device capturing images on the human’s eye and sending these images over a transmission medium (wire/wireless transmission). One important request of this system is the real-time transmission of the captured images, along with low-power, low-heat, low-MIPS requirements. This work is concentrated around an improvement of the ROI (Region of Interest – region containing image of the human’s pupil) image compression performance achieved via extra information removal. The feature based compression lies on ROI image blocks classification, implemented using a neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morozkin, P., Swynghedauw, M., Trocan, M.: Neural network based eye tracking. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 600–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_58

    Chapter  Google Scholar 

  2. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye Tracking: A Comprehensive Guide to Methods and Measures. OUP Oxford, Oxford (2011)

    Google Scholar 

  3. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)

    Google Scholar 

  4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  6. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP 2002, vol. 1, pp. 900–903 (2002)

    Google Scholar 

  7. Messom, C., Barczak, A.: Fast and efficient rotated haar-like features using rotated integral images. In: Australian Conference on Robotics and Automation, pp. 1–6 (2006)

    Google Scholar 

  8. Pavani, S.-K., Delgado, D., Frangi, A.: Haar-like features with optimally weighted rectangles for rapid object detection. Pattern Recogn. 43(1), 160–172 (2010)

    Article  MATH  Google Scholar 

  9. Barczak, A.L.C., Johnson, M.J., Messom, C.H.: Real-time computation of haar-like features at generic angles for detection algorithms. Res. Lett. Inf. Math. Sci. 9, 98–111 (2006)

    Google Scholar 

  10. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, no. 1, pp. 511–518 (2001)

    Google Scholar 

  11. Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural network design. Martin Hagan (2014)

    Google Scholar 

  12. Torch framework. www.torch.ch. Accessed 9 Oct 2017

  13. Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Alkon, D.L.: Accelerating the convergence of the back-propagation method. Biol. Cybern. 59(4), 257–263 (1988)

    Article  Google Scholar 

  14. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In: NIPS, pp. 512–518 (1999)

    Google Scholar 

  15. ISO/IEC 15444-1:2004 | ITU-T Rec. T.800

    Google Scholar 

  16. Morozkin, P., Swynghedauw, M., Trocan, M.: Image quality impact for eye tracking systems accuracy. In: 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 429–431 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Morozkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morozkin, P., Swynghedauw, M., Trocan, M. (2018). Feature-Based Image Compression. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10751. Springer, Cham. https://doi.org/10.1007/978-3-319-75417-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75417-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75416-1

  • Online ISBN: 978-3-319-75417-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics