Abstract
Neural network based sequence-to-sequence models have shown to be the effective approach for paraphrase generation. In the problem of paraphrase generation, there are some words which should be ignored in the target text generation. The current models do not pay enough attention to this problem. To overcome this limitation, in this paper we propose a new model which is a penalty coefficient attention-based Residual Long-Short-Term-Memory (PCA-RLSTM) neural network for forming an end-to-end paraphrase generation model. Extensive experiments on the two most popular corpora (PPDB and WikiAnswers) show that our proposed model’s performance is better than the state-of-the-art models for paragraph generation problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Bannard, C., Callison-Burch, C.: Paraphrasing with bilingual parallel corpora. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 597–604. Association for Computational Linguistics (2005)
Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)
Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models for speech recognition. In: Advances in Neural Information Processing Systems, pp. 577–585 (2015)
Fader, A., Zettlemoyer, L., Etzioni, O.: Paraphrase-driven learning for open question answering. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1608–1618 (2013)
Graves, A., Jaitly, N., Mohamed, A.-R.: Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 273–278. IEEE (2013)
Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)
Hasan, S.A., Liu, B., Liu, J., Qadir, A., Lee, K., Datla, V., Prakash, A., Farri, O.: Neural clinical paraphrase generation with attention. In: ClinicalNLP 2016, p. 42 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. arXiv preprint arXiv:1608.06993 (2016)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection, pp. 1137–1143. Morgan Kaufmann (1995)
Kolesnyk, V., Rocktäschel, T., Riedel, S.: Generating natural language inference chains. arXiv preprint arXiv:1606.01404 (2016)
Kozlowski, R., McCoy, K.F., Vijay-Shanker, K.: Generation of single-sentence paraphrases from predicate/argument structure using lexico-grammatical resources. In: Proceedings of the Second International Workshop on Paraphrasing, vol. 16, pp. 1–8. Association for Computational Linguistics (2003)
Lavie, A., Agarwal, A.: Meteor: an automatic metric for MT evaluation with high levels of correlation with human judgments. In: Proceedings of the Second Workshop on Statistical Machine Translation, pp. 228–231. Association for Computational Linguistics (2007)
Li, X., Wu, X.: Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4520–4524. IEEE (2015)
Liu, C., Dahlmeier, D., Ng, H.T.: PEM: a paraphrase evaluation metric exploiting parallel texts. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 923–932. Association for Computational Linguistics (2010)
Madnani, N., Dorr, B.J.: Generating phrasal and sentential paraphrases: a survey of data-driven methods. Comput. Linguist. 36(3), 341–387 (2010)
McKeown, K.R.: Paraphrasing questions using given and new information. Comput. Linguist. 9(1), 1–10 (1983)
Manning, C.D., Luong, M.-T., Pham, H.: Effective approaches to attention-based neural machine translation. CoRR abs/1508.0402 (2017)
Nguyen, N.K., Le, A.-C., Pham, H.T.: Deep bi-directional long short-term memory neural networks for sentiment analysis of social data. In: Huynh, V.-N., Inuiguchi, M., Le, B., Le, B.N., Denoeux, T. (eds.) IUKM 2016. LNCS (LNAI), vol. 9978, pp. 255–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49046-5_22
Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics (2002)
Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026 (2013)
Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification (2015)
Prakash, A., Hasan, S.A., Lee, K., Datla, V., Qadir, A., Liu, J., Farri, O.: Neural paraphrase generation with stacked residual LSTM networks. arXiv preprint arXiv:1610.03098 (2016)
Rus, V., Lintean, M.: A comparison of greedy and optimal assessment of natural language student input using word-to-word similarity metrics. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, pp. 157–162. Association for Computational Linguistics (2012)
Serban, I.V., Klinger, T., Tesauro, G., Talamadupula, K., Zhou, B., Bengio, Y., Courville, A.: Multiresolution recurrent neural networks: An application to dialogue response generation. arXiv preprint arXiv:1606.00776 (2016)
Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proceedings of Association for Machine Translation in the Americas, vol. 200 (2006)
Socher, R., Huang, E.H., Pennington, J., Ng, A.Y., Manning, C.D.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: NIPS, vol. 24, pp. 801–809 (2011)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Interspeech, pp. 194–197 (2012)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)
Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign language. In: Advances in Neural Information Processing Systems, pp. 2773–2781 (2015)
Wieting, J., Bansal, M., Gimpel, K., Livescu, K., Roth, D.: From paraphrase database to compositional paraphrase model and back. arXiv preprint arXiv:1506.03487 (2015)
Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)
Wubben, S., Van Den Bosch, A., Krahmer, E.: Paraphrase generation as monolingual translation: data and evaluation. In: Proceedings of the 6th International Natural Language Generation Conference, pp. 203–207. Association for Computational Linguistics (2010)
Zhao, S., Lan, X., Liu, T., Li, S.: Application-driven statistical paraphrase generation. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, vol. 2, pp. 834–842. Association for Computational Linguistics (2009)
Zhao, S., Niu, C., Zhou, M., Liu, T., Li, S.: Combining multiple resources to improve SMT-based paraphrasing model. In: ACL, pp. 1021–1029 (2008)
Zhao, S., Wang, H., Lan, X., Liu, T.: Leveraging multiple MT engines for paraphrase generation. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 1326–1334. Association for Computational Linguistics (2010)
Acknowledgement
This paper is supported by The Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.01-2014.22.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Nguyen-Ngoc, K., Le, AC., Nguyen, VH. (2018). An Attention-Based Long-Short-Term-Memory Model for Paraphrase Generation. In: Huynh, VN., Inuiguchi, M., Tran, D., Denoeux, T. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2018. Lecture Notes in Computer Science(), vol 10758. Springer, Cham. https://doi.org/10.1007/978-3-319-75429-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-75429-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75428-4
Online ISBN: 978-3-319-75429-1
eBook Packages: Computer ScienceComputer Science (R0)