Skip to main content

Sensory Quality Assessment of Food Using Active Learning

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10758))

  • 1408 Accesses

Abstract

The correctness of sensory assessment of food quality based on machine learning approach is significantly growing in the food industry. It contributes to an improvement of the food composition and develops the new food products. However, this process requires human intervention. And thus, it is costly, time consuming and easily be biased. In this paper, we propose the Active learning method based on Sequential minimizing optimization in order to evaluate sensory of red wine quality. The general idea is letting the algorithm choose the most uncertain products and asking experts for their opinions. This scheme greatly reduces the number of labels needed for the training process, and, consequently leads to the reduction on the cost of the sensory evaluation process. Experimental results show that the prospect of this method can be widely applied in the optimization of food ingredient and consumer tastes from food consumption markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boccorh, R.K., Paterson, A.: An artificial neural network model for predicting flavour intensity in blackcurrant concentrates. Food Qual. Prefer. 13(2), 117–128 (2002)

    Article  Google Scholar 

  2. Capozzoli, A., Lauro, F., Khan, I.: Fault detection analysis using data mining techniques for a cluster of smart office buildings. Expert Syst. Appl. 42(9), 4324–4338 (2015)

    Article  Google Scholar 

  3. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

  4. Cortez, P., Portelinha, M., Rodrigues, S., Cadavez, V., Teixeira, A.: Lamb meat quality assessment by support vector machines. Neural Process. Lett. 24(1), 41–51 (2006)

    Article  Google Scholar 

  5. Debjani, C., Das, S., Das, H.: Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food. J. Food Sci. Technol. 50(6), 1088–1096 (2013)

    Article  Google Scholar 

  6. Dębska, B., Guzowska-Świder, B.: Application of artificial neural network in food classification. Anal. Chim. Acta 705(1), 283–291 (2011)

    Article  Google Scholar 

  7. Dong, J.J., Li, Q.L., Yin, H., Zhong, C., Hao, J.G., Yang, P.F., Tian, Y.H., Jia, S.R.: Predictive analysis of beer quality by correlating sensory evaluation with higher alcohol and ester production using multivariate statistics methods. Food Chem. 161, 376–382 (2014)

    Article  Google Scholar 

  8. Ghasemi-Varnamkhasti, M., Mohtasebi, S.S., Rodriguez-Mendez, M.L., Lozano, J., Razavi, S.H., Ahmadi, H., Apetrei, C.: Classification of non-alcoholic beer based on aftertaste sensory evaluation by chemometric tools. Expert Syst. Appl. 39(4), 4315–4327 (2012)

    Article  Google Scholar 

  9. Granitto, P.M., Gasperi, F., Biasioli, F., Trainotti, E., Furlanello, C.: Modern data mining tools in descriptive sensory analysis: A case study with a random forest approach. Food Qual. Prefer. 18(4), 681–689 (2007)

    Article  Google Scholar 

  10. He, H., Wang, D., Xu, Y., Tan, J.: Data synthesis in the community land model for ecosystem simulation. J. Comput. Sci. 13, 83–95 (2016)

    Article  MathSciNet  Google Scholar 

  11. Lawless, H.T., Heymann, H.: Sensory Evaluation of Food: Principles and Practices. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6488-5

    Book  Google Scholar 

  12. Lee, S.J., Kwon, Y.A.: Study on fuzzy reasoning application for sensory evaluation of sausages. Food Control 18(7), 811–816 (2007)

    Article  Google Scholar 

  13. Li, J., Sander, J., Campello, R., Zimek, A.: Active learning strategies for semi-supervised DBSCAN. In: Sokolova, M., van Beek, P. (eds.) AI 2014. LNCS (LNAI), vol. 8436, pp. 179–190. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06483-3_16

    Chapter  Google Scholar 

  14. Lichman, M.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml

  15. Mai, S.T., Assent, I., Storgaard, M.: AnyDBC: An efficient anytime density-based clustering algorithm for very large complex datasets. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1034. ACM (2016)

    Google Scholar 

  16. Mai, S.T., Dieu, M.S., Assent, I., Jacobsen, J., Kristensen, J., Birk, M.: Scalable and interactive graph clustering algorithm on multicore CPUs. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 349–360. IEEE (2017)

    Google Scholar 

  17. Mai, S.T., He, X., Hubig, N., Plant, C., Bohm, C.: Active density-based clustering. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 508–517. IEEE (2013)

    Google Scholar 

  18. Martínez, L.: Sensory evaluation based on linguistic decision analysis. Int. J. Approximate Reasoning 44(2), 148–164 (2007)

    Article  Google Scholar 

  19. Martínez, L., Pérez, L.G., Liu, J., Espinilla, M.: A fuzzy model for olive oil sensory evaluation. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 615–624. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72950-1_61

    Chapter  Google Scholar 

  20. Mukhopadhyay, S., Majumdar, G., Goswami, T., Mishra, H.: Fuzzy logic (similarity analysis) approach for sensory evaluation of chhana podo. LWT-Food Sci. Technol. 53(1), 204–210 (2013)

    Article  Google Scholar 

  21. Platt, J.: Sequential minimal optimization: A fast algorithm for training support vector machines (1998)

    Google Scholar 

  22. Ropodi, A., Panagou, E., Nychas, G.J.: Data mining derived from food analyses using non-invasive/non-destructive analytical techniques; determination of food authenticity, quality & safety in tandem with computer science disciplines. Trends Food Sci. Technol. 50, 11–25 (2016)

    Article  Google Scholar 

  23. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  25. Singh, K., Mishra, A., Mishra, H.: Fuzzy analysis of sensory attributes of bread prepared from millet-based composite flours. LWT-Food Sci. Technol. 48(2), 276–282 (2012)

    Article  Google Scholar 

  26. Sinija, V., Mishra, H.: Fuzzy analysis of sensory data for quality evaluation and ranking of instant green tea powder and granules. Food Bioprocess Technol. 4(3), 408–416 (2011)

    Article  Google Scholar 

  27. Stone, H., Sidel, J.: Sensory Evaluation Practices. Elsevier Academic Press, California (2004)

    Google Scholar 

  28. Tuia, D., Muñoz-Marí, J., Camps-Valls, G.: Remote sensing image segmentation by active queries. Pattern Recogn. 45(6), 2180–2192 (2012)

    Article  Google Scholar 

  29. Varzakas, T., Tzia, C.: Handbook of Food Processing: Food Safety, Quality, and Manufacturing Processes, vol. 35. CRC Press, Boca Raton (2015)

    Google Scholar 

  30. Zhao, W., He, Q., Ma, H., Shi, Z.: Effective semi-supervised document clustering via active learning with instance-level constraints. Knowl. Inf. Syst. 30(3), 569–587 (2012)

    Article  Google Scholar 

  31. Zolfaghari, Z.S., Mohebbi, M., Najariyan, M.: Application of fuzzy linear regression method for sensory evaluation of fried donut. Appl. Soft Comput. 22, 417–423 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhat-Vinh Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, NV., Huynh, VN., Yuizono, T., Nguyen, TK. (2018). Sensory Quality Assessment of Food Using Active Learning. In: Huynh, VN., Inuiguchi, M., Tran, D., Denoeux, T. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2018. Lecture Notes in Computer Science(), vol 10758. Springer, Cham. https://doi.org/10.1007/978-3-319-75429-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75429-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75428-4

  • Online ISBN: 978-3-319-75429-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics