Abstract
Pairs trading is a well-established speculative investment strategy in financial markets. However, the presence of extreme structural change in economy and financial markets might cause simple pairs trading signals to be wrong. To overcome this problem in detecting the buy/sell signals, we propose the use of three non-linear models consisting of Kink, Threshold and Markov Switching models. We would like to model the return spread of potential stock pairs by these three models with GARCH effects and the upper and lower regimes in each model are used to find the trading entry and exit signals. We also identify the best fit nonlinear model using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). An application to the Dow Jones Industrial Average (DJIA), New York Stock Exchange (NYSE), and NASDAQ stock markets are presented and the results show that Markov Switching model with GARCH effects can perform better than other models. Finally, the empirical results suggest that the regime-switching rule for pairs trading generates positive returns and so it offers an interesting analytical alternative to traditional pairs trading rules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bauwens, L., Preminger, A., Rombouts, J.: Theory and Inference for a Markov Switching GARCH Model, Center for 2009-11
Bock, M., Mestel, R.: A regime-switching relative value arbitrage rule. In: Fleischmann, B., Borgwardt, K.H., Klein, R., Tuma, A. (eds.) Operations Research Proceedings. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00142-0_2
Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econom. 31, 307–328 (1986)
Boonyasana, P., Chinnakum, W.: Forecasting Chinese international outbound tourists: Copula Kink AR-GARCH model. Thai J. Math. 215–229 (2016)
Chen, C.W.S., Chen, M., Chen, S.-Y.: Pairs trading via three-regime threshold autoregressive GARCH models. In: Huynh, V.-N., Kreinovich, V., Sriboonchitta, S. (eds.) Modeling Dependence in Econometrics. AISC, vol. 251, pp. 127–140. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03395-2_8
Do, B., Faff, R., Hamza, K.: A new approach to modeling and estimation for pairs trading. In: Proceedings of 2006 Financial Management Association European Conference, pp. 87–99, May 2006
Engle, R.F.: Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1007 (1982)
Gatev, E., Goetzmann, W.N., Rouwenhorst, K.G.: Pairs trading: performance of a relative-value arbitrage rule. Rev. Fin. Stud. 19, 797–827 (2006)
Elliott, R.J., Van Der Hoek, J., Malcolm, W.P.: Pairs trading. Quant. Financ. 5(3), 271–276 (2005)
Haas, M., Mittnik, S., Paolella, M.S.: A new approach to Markov-switching GARCH models. J. Financ. Econom. 2(4), 493–530 (2004)
Hamilton, J.D.: A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica J. Econ. Soc. 57, 357–384 (1989)
Hansen, B.E.: Regression kink with an unknown threshold. J. Bus. Econ. Stat. 35(2), 228–240 (2017)
Li, C.W., Li, W.K.: On a double-threshold autoregressive heteroscedastic time series model. J. Appl. Econom. 11, 253–274 (1996)
Marcucci, J.: Forecasting stock market volatility with regime-switching GARCH models. Stud. Nonlinear Dyn. Econom. 9(4) (2005)
Miao, G.J.: High frequency and dynamic pairs trading based on statistical arbitrage using a two-stage correlation and cointegration approach. Int. J. Econ. Financ. 6(3), 96 (2014)
Perlin, M.S.: Evaluation of pairs-trading strategy at the Brazilian financial market. J. Deriv. Hedge Funds 15(2), 122–136 (2009)
Vidyamurthy, G.: Pairs Trading: Quantitative Methods and Analysis, vol. 217. Wiley, Hoboken (2004)
Yang, J.W., Tsai, S.Y., Shyu, S.D., Chang, C.C.: Pairs trading: the performance of a stochastic spread model with regime switching-evidence from the S&P 500. Int. Rev. Econ. Financ. 43, 139–150 (2016)
Zhu, K., Yamaka, W., Sriboonchitta, S.: Pair trading rule with switching regression GARCH model. In: Huynh, V.-N., Inuiguchi, M., Le, B., Le, B.N., Denoeux, T. (eds.) IUKM 2016. LNCS (LNAI), vol. 9978, pp. 586–598. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49046-5_50
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Chodchuangnirun, B., Zhu, K., Yamaka, W. (2018). Pairs Trading via Nonlinear Autoregressive GARCH Models. In: Huynh, VN., Inuiguchi, M., Tran, D., Denoeux, T. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2018. Lecture Notes in Computer Science(), vol 10758. Springer, Cham. https://doi.org/10.1007/978-3-319-75429-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-75429-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75428-4
Online ISBN: 978-3-319-75429-1
eBook Packages: Computer ScienceComputer Science (R0)