Skip to main content

Joint Myocardial Registration and Segmentation of Cardiac BOLD MRI

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges (STACOM 2017)

Abstract

Registration and segmentation of anatomical structures are two well studied problems in medical imaging. Optimizing segmentation and registration jointly has been proven to improve results for both challenges. In this work, we propose a joint optimization scheme for registration and segmentation using dictionary learning based descriptors. Our joint registration and segmentation aims to solve an optimization function, which enables better performance for both of these ill-posed processes. We build two dictionaries for background and myocardium for square patches extracted from training images. Based on dictionary learning residuals and sparse representations defined on these pre-trained dictionaries, a Markov Random Field (MRF) based joint optimization scheme is built. The algorithm proceeds iteratively updating the dictionaries in an online fashion. The accuracy of the proposed method is illustrated on Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI and standard cine Cardiac MRI data from MICCAI 2013 SATA Segmentation Challenge. The proposed joint segmentation and registration method achieves higher dice accuracy for myocardium segmentation compared to its variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharon, M., et al.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE TSP 54(11), 4311–4322 (2006)

    MATH  Google Scholar 

  2. Alchatzidis, A., et al.: A discrete MRF framework for integrated multi-atlas registration and segmentation. IJCV 121(1), 169–181 (2017)

    Article  Google Scholar 

  3. Alchatzidis, S., et al.: Discrete multi atlas segmentation using agreement constraints. In: BMVC (2014)

    Google Scholar 

  4. Bevilacqua, M., et al.: Dictionary-driven ischemia detection from cardiac phase-resolved myocardial BOLD MRI at rest. IEEE TMI 35(1), 282–293 (2016)

    MathSciNet  Google Scholar 

  5. Boykov, Y., et al.: Fast approximate energy minimization via graph cuts. IEEE PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  6. Fonseca, C.G., et al.: The cardiac atlas projectan imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)

    Article  Google Scholar 

  7. Gass, T., et al.: Simultaneous segmentation and multiresolution nonrigid atlas registration. IEEE TIP 23(7), 2931–2943 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Glocker, B., et al.: Dense image registration through MRFs and efficient linear programming. MedIA 12(6), 731–741 (2008)

    Google Scholar 

  9. Huang, X., et al.: Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. MedIA 18, 253–271 (2014)

    Google Scholar 

  10. Mahapatra, D., Sun, Y.: Joint registration and segmentation of dynamic cardiac perfusion images using MRFs. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 493–501. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_60

    Chapter  Google Scholar 

  11. Mahapatra, D., et al.: Integrating segmentation information for improved MRF-based elastic image registration. IEEE TIP 20(1), 170–183 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Mairal, J., et al.: Online dictionary learning for sparse coding. In: ICML, pp. 689–696 (2009)

    Google Scholar 

  13. Mukhopadhyay, A., Oksuz, I., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A.: Data-driven feature learning for myocardial segmentation of CP-BOLD MRI. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 189–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20309-6_22

    Chapter  Google Scholar 

  14. Oksuz, I., Mukhopadhyay, A., Bevilacqua, M., Dharmakumar, R., Tsaftaris, S.A.: Dictionary learning based image descriptor for myocardial registration of CP-BOLD MR. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 205–213. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_25

    Chapter  Google Scholar 

  15. Oksuz, I., et al.: Unsupervised myocardial segmentation for cardiac BOLD. IEEE TMI 36, 2228–2238 (2017)

    Google Scholar 

  16. Parisot, S., et al.: Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs. MedIA 18(4), 647–659 (2014)

    Google Scholar 

  17. Queiros, S., et al.: Fast automatic myocardial segmentation in 4D cine CMR datasets. MedIA 18(7), 1115–1131 (2014)

    Google Scholar 

  18. Tropp, J.A., et al.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tsaftaris, S.A., et al.: Detecting myocardial ischemia at rest with cardiac phase-resolved blood oxygen level-dependent cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 6(2), 311–319 (2013)

    Article  Google Scholar 

  20. Wang, F., et al.: Joint registration and segmentation of neuroanatomic structures from brain MRI. Acad. Radiol. 13(9), 1031–1044 (2006)

    Article  Google Scholar 

  21. Wyatt, P.P., et al.: MAP MRF joint segmentation and registration of medical images. MedIA 7(4), 539–552 (2003)

    Google Scholar 

  22. Yezzi, A., et al.: A variational framework for integrating segmentation and registration through active contours. MedIA 7(2), 171–185 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkay Oksuz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oksuz, I., Dharmakumar, R., Tsaftaris, S.A. (2018). Joint Myocardial Registration and Segmentation of Cardiac BOLD MRI. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. STACOM 2017. Lecture Notes in Computer Science(), vol 10663. Springer, Cham. https://doi.org/10.1007/978-3-319-75541-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75541-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75540-3

  • Online ISBN: 978-3-319-75541-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics