Skip to main content

GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges (STACOM 2017)

Abstract

In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge. The novelty of our network comes with its embedded shape prior and its loss function tailored to the cardiac anatomy. Our model includes a cardiac center-of-mass regression module which allows for an automatic shape prior registration. Also, since our method processes raw MR images without any manual preprocessing and/or image cropping, our CNN learns both high-level features (useful to distinguish the heart from other organs with a similar shape) and low-level features (useful to get accurate segmentation results). Those features are learned with a multi-resolution conv-deconv “grid” architecture which can be seen as an extension of the U-Net.

Experimental results reveal that our method can segment the left and right ventricles as well as the myocardium from a 3D MRI cardiac volume in 0.4 s with an average Dice coefficient of 0.90 and an average Hausdorff distance of \(10.4\) mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    No need to store the probability of “Back” since the 4 probabilities sum up to 1.

References

  1. Epstein, F.H.: MRI of left ventricular function. J Nucl. Cardiol 14(5), 729–744 (2007)

    Article  Google Scholar 

  2. Vick, G.W.: The gold standard for noninvasive imaging in coronary heart disease: magnetic resonance imaging. Curr. opin. cardiol. 24(6), 567–579 (2009)

    Article  Google Scholar 

  3. Peng, P., et al.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. MAGMA 29(2), 155–195 (2016)

    Article  MathSciNet  Google Scholar 

  4. Petitjean, C., et al.: Right ventricle segmentation from cardiac MRI: a collation study. Med. Image Anal. 19(1), 187–202 (2015)

    Article  Google Scholar 

  5. Auger, D.A., et al.: Semi-automated left ventricular segmentation based on a guide point model approach for 3D cine DENSE cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 16(1), 8 (2014)

    Article  Google Scholar 

  6. Grosgeorge, D., Petitjean, C., Dacher, J.-N., Ruan, S.: Graph cut segmentation with a statistical shape model in cardiac MRI. CVIU 117(9), 1027–1035 (2013)

    Google Scholar 

  7. Petitjean, C., Dacher, J.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)

    Article  Google Scholar 

  8. Wang, L., Pei, M., Codella, N.C.F., et al.: Left ventricle: fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST). BioMed Res. Int. 2015, 9 (2015). https://doi.org/10.1155/2015/367583. Article ID 367583

    Google Scholar 

  9. Liu, Y., Captur, G., et al.: Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI. Magn. Reson. Img. 34(5), 699–706 (2016)

    Article  Google Scholar 

  10. Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494 (2016)

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  12. Noh, H., Hong, S., Han, S.: Learning deconvolution network for semantic segmentation. In: Proceedings of ICCV (2015)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of MICCAI, pp. 234–241 (2015)

    Google Scholar 

  14. Tan, L.K., et al.: Cardiac left ventricle segmentation using convolutional neural network regression. In: Proceedings of IECBES, pp. 490–493. IEEE (2016)

    Google Scholar 

  15. Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35(1), 159–171 (2017)

    Article  Google Scholar 

  16. Kastler, B.: Cardiovascular anatomy and atlas of MR normal anatomy. MRI of Cardiovascular Malformations, pp. 17–39. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-540-30702-0_2

    Chapter  Google Scholar 

  17. ACDC-MICCAI challenge. http://acdc.creatis.insa-lyon.fr/

  18. Tavakoli, V., Amini, A.A.: A survey of shaped-based registration and segmentation techniques for cardiac images. CVIU 117(9), 966–989 (2013)

    Google Scholar 

  19. Luo, Z., Mishra, A., Achkar, A., Eichel, J., Li, S.-Z., Jodoin, P.-M.: Non-local deep features for salient object detection. In: proceeding of CVPR (2017)

    Google Scholar 

  20. Srivastava, N., Hinton, G., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. of Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2015)

    Google Scholar 

  22. Zou, K.H., et al.: Statistical validation of image segmentation quality based on a spatial overlap index 1: scientific reports. Acad. rad. 11(2), 178–189 (2004)

    Article  Google Scholar 

  23. Huttenlocher, D., Klanderman, G., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans PAMI 15(9), 850–863 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Zotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zotti, C., Luo, Z., Humbert, O., Lalande, A., Jodoin, PM. (2018). GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. STACOM 2017. Lecture Notes in Computer Science(), vol 10663. Springer, Cham. https://doi.org/10.1007/978-3-319-75541-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75541-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75540-3

  • Online ISBN: 978-3-319-75541-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics