
Runtime Verification for Decentralised
and Distributed Systems

Adrian Francalanza1, Jorge A. Pérez2,3, and César Sánchez4(B)

1 CS@ICT, University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

2 University of Groningen, Groningen, The Netherlands
j.a.perez@rug.nl

3 CWI, Amsterdam, The Netherlands
4 IMDEA Software Institute, Madrid, Spain

cesar.sanchez@imdea.org

Abstract. This chapter surveys runtime verification research related to
distributed systems. We report solutions that study how to monitor sys-
tem with some distributed characteristic, solutions that use a distributed
platform for performing a monitoring task, and foundational works that
present semantics for decomposing monitors or expressing specifications
amenable for distributed systems.

We will identify some characteristics that distinguish distributed mon-
itoring from centralised monitoring, and characteristics that allow to
classify distributed runtime verification works based on features of the
executing platforms, the specification language and the system descrip-
tion. Then, we will use these characteristics to describe and compare
the distributed runtime verification solutions proposed in the research
literature.

Keywords: Monitoring distributed systems · Distributed monitoring
Decentralised monitoring · Monitor decomposition

1 Introduction

This chapter surveys works on runtime verification (RV) related to distributed
computing systems. Distributed computing is the area of computer science
devoted to the study of distributed systems: computational artifacts that run
in execution units placed at different locations, and that exchange information
using a communication infrastructure, such as a computer network (see Coulouris
[38], Garg [62], Attiya and Welch [4]).

Since distributed systems encompass many different but related classes of
systems, the terminology has not been uniformly used. We begin by clarifying
what we mean in this chapter by different terms and conventions commonly used
in distributed computing, particularly with respect to monitoring.

The computational units that form a distributed system are typically able to
execute processes simultaneously, under true concurrency. Each computational
c© Springer International Publishing AG, part of Springer Nature 2018

E. Bartocci and Y. Falcone (Eds.): Lectures on Runtime Verification, LNCS 10457, pp. 176–210, 2018.

https://doi.org/10.1007/978-3-319-75632-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75632-5_6&domain=pdf


Runtime Verification for Decentralised and Distributed Systems 177

unit can run more than one process, and independently manage a set of local
resources, typically including local memory and a local clock. We call each of
these computational units a location.

There are two large classes of distributed systems, according to the way
in which processes communicate and synchronize: systems that can use shared
memory, and systems that can only use some form of message passing as means
of communication. It is nowadays widely accepted to refer to the former as par-
allel systems and to the latter as distributed systems, and here we follow this
convention. Additionally, some systems assume the existence of a shared clock
(also called global clock) among the computational units, which is another usual
classification criteria. When one assumes the existence of a global clock, the
distributed system is usually called synchronous or decentralised system. If the
global clock is not assumed then the system is called asynchronous distributed
system or simply a distributed system. Sometimes the communication infrastruc-
ture within the distributed system is simple, as in the case of buses or broadcast
communication, but it is often the case that the network topology is relevant for
the study of a given class of distributed systems. We follow the convention that,
unless specified otherwise, all execution units can talk to all other execution
units directly.

In practice, components of distributed systems can fail independently. Loca-
tions are typically the units of failure, modeling crashes on the execution plat-
form that cause all processes in the location to stop their execution. Moreover,
messages in message passing systems can arrive out-of-order, be duplicated or
lost, or experience unbounded delays. The nature of the failures and the high
independence of failure between the different components is another factor of
complexity when dealing with distributed systems. Unless stated, it is common
in distributed systems to assume that the system under study presents no fail-
ures. We follow this convention here too.

Due to their concurrent nature and to the other aspects of distribution, it is
well-known that distributed systems are notoriously difficult to design and rea-
son about. Throughout the years researchers have proposed many techniques to
increase the reliability of distributed algorithms and systems, including dynamic
solutions. These efforts include the development of runtime verification tech-
niques for distributed computing, which we report here. We will use distributed
runtime verification to refer to the broad area of research that studies run-
time verification in connection with distributed or decentralised systems. This
includes the monitoring of distributed systems as well as the use of distributed
systems for monitoring. Due again to these intrinsic difficulties, distributed run-
time verification is a very active area of research and new results will be produced
in the near future.

Terminology. A distributed and decentralised monitoring setting is typically
built from subsystems, which we identify with processes for the discussion in
this chapter. We use P1, P2, . . . to refer to processes. Processes execute indepen-
dently and occasionally synchronize or communicate with each another via the
underlying communication platform.



178 A. Francalanza et al.

Processes are partitioned across locations, meaning that every process is
located at exactly one location for any given instance. We use l, k, . . . to refer
to locations. When two processes are co-located at the same location, we say
that they are local to one another. Otherwise, we say that they are remote.
Processes may interact and communicate with both local and remote processes.
Remote communication is typically assumed to be more expensive than its local
counterpart.

A local trace (or simply a trace), denoted T1, T2, . . . constitutes a log of past
behavior used for monitoring purposes. A trace consists of a totally ordered set
of trace events, each describing discrete computational steps of the monitored
system. The ordering of trace events is necessary for the monitoring of temporal
properties. A trace can describe events corresponding to a single process or else
a group of processes. Although a particular location may host a number of traces
(e.g., one per process hosted), we assume that a local trace cannot span across
locations.

A monitoring task can be performed online, while the system under analy-
sis is running, or offline by analysing the log after the system has finished its
execution. Here we consider both kinds of solutions.

In runtime verification, monitors are created from specifications, but we will
use monitoring and runtime verification interchangeably in this chapter. In online
runtime verification, monitors—denoted as M1,M2, . . .—are computing entities
that check at runtime for the satisfaction or violation of correctness properties of
the running system. Different monitors can be created to verify different proper-
ties simultaneously, and also in a modular fashion, which generally leads to better
separation of concerns. The checking that the monitors perform is carried out by
analysing the traces generated by the executing processes. Similar to processes,
monitors are hosted by a single location for any given instance. We allow moni-
tors to analyse multiple traces in order to generate composite traces. We do not
put restrictions on whether a monitor is allowed to analyse local or remote traces,
but highlight the fact that remote trace analysis may carry additional overhead
costs and entail higher security risks. Monitors are allowed to communicate with
one another, which gives the flexibility for property checking to be carried out in
a decentralised or choreographed manner (see Sects. 4.2 and 4.4).

The rest of the chapter is organised as follows. Section 2 presents a collection
of reasons that have been proposed in the literature to motivate the study of
distributed runtime verification problems. Section 3 identifies a number of char-
acteristics that are relevant in the study of the solutions proposed; these charac-
teristics serve as a basis to classify and compare the proposed solutions. Section 4
contains a description of the different ways to organize the activities carried out
by the monitoring infrastructures. Section 5 describes a collection of solutions
proposed in the literature, classified according to the attributes described in
the preceding sections. Finally, Sect. 6 presents current challenges and conclud-
ing remarks. The following diagram illustrates the dependencies between the
sections.



Runtime Verification for Decentralised and Distributed Systems 179

2 Motivations

3 Characteristics

4 Organizations

1 Introduction 5 Instantiations

Essentially, Sect. 5 contains the description and comparison of relevant work,
using the classification characteristics extracted in Sect. 3.

2 Motivation and Scenarios

In this section we justify the study of distributed runtime verification. We present
different scenarios that motivated research related to distributed runtime veri-
fication, according to the problem that these efforts were trying to solve. The
list we present here is not intended to be exhaustive but its purpose is to give
some practical justifications for the study of distributed runtime verification.
Similarly, we do not claim that the papers cited are necessarily the first work
to propose the study of a similar class of problems. The works mentioned below
are further discussed in Sect. 5.

Observing Distributed Computations. The obvious setting where distrib-
uted monitoring arises is when the system under scrutiny is itself distributed.
One important problem related to observing distributed computations is that of
detecting global predicates, which is recognised as an important problem since
the early ages of distributed computing (Cooper and Marzullo [37]).

It is known that checking general predicates is hard, since one has to store
and enumerate all interleavings of the local processes. The so-called computation
slices can be used for a more efficient detection (see Mittal et al. [79], Alagar
and Venkatesan [1], Chauhan et al. [30]). Computation slices are abstractions
of the distributed computation that guarantee the following: the predicate is
present in a slice of a computation c if the predicate occurred in some state
of c. This approximation is precise enough to detect the predicate. If an algo-
rithm is too general and does not exploit the structure of the predicate under
consideration, predicate detection can involve a long runtime and large mem-
ory overhead (Chauhan et al. [30]). Hence, best current solutions for predi-
cate detection consider only fragments of the possible space of global predicates
(for example the so-called linear, relational, regular and co-regular, and stable
fragments) to gain efficiency. Even though most techniques for predicate detec-
tion (Cooper and Marzullo [37], Mittal et al. [79], Alagar and Venkatesan [1])
send all local events to a central process for inspection of its interleavings, some
modern approaches (see Chauhan et al. [30]) consider purely distributed detec-
tion. Based on Chauhan et al. [30], Mostafa and Bonakdarpour [80] adapt the
work to check whether properties defined using LTL are satisfied.



180 A. Francalanza et al.

Analysis Decomposition. Most approaches to runtime verification either con-
sider the system under dynamic evaluation as a black-box, or only inspect the
internals of the monitored system with the goal to instrument the system for the
monitoring task. However, it is common—using design principles like component-
based design—that the description of the system is decomposed into different
units.

For example, the work by Falcone et al. [49] investigates how to use the hier-
archical description of the system to generate monitors that are then composed
with the original system. This process produces a modified system that shares
the original decomposition (and implements its functionality) and also includes
the monitors embedded. Within this setting, the authors study how to compile
a given design into either a centralised or a decentralised platform by deciding
the placement of components using different deployment possibilities. Although
the work by Falcone et al. [49] does not specifically target distributed systems,
the solution obtained from the compilation of the modified system can lead to
a distributed monitoring solution if the target platform is distributed.

A similar approach is exemplified by Cassar and Francalanza [23,24], where a
framework for monitoring asynchronous component-based systems is presented.
Again, the authors do not treat the system under scrutiny as a single monolithic
block, but identify its constituent sub-components in the form of independently
computing entities, called actors. The resulting monitoring setup generated is
also localised to sub-components of the system, mirroring its non-monolithic
structure. Even though actor systems are not necessarily executed in distributed
fashion, the asynchronous nature of the code generated and its localisation lead
to a straightforward distribution.

Exploiting Parallelism. Another justification for studying runtime verifica-
tion in the context of distributed systems is the exploitation of parallel executing
units to perform a monitoring task. For example, Berkovich et al. [14] propose
to use additional hardware (a GPU parallel execution platform) to minimize the
impact of online monitors on execution time overhead, reducing the intrusiveness.
Moreover, the works by Francalanza and Seychell [59,60] report performance
gains in terms of lower overheads when monitors are specified as concurrent
entities and executed over the prevalent multi-core and multi-processor archi-
tectures. This gain is obtained because the concurrent monitors exploit better
the resources of the underlying processing units.

Fault Tolerance. Handling failures in distributed systems is challenging
because different components can fail independently (e.g., nodes crashing)
and the communication can miss, duplicate or reorder messages or incur in
unbounded delays (Francalanza and Hennessy [58]). Even worse, there can be
complicated failure dependencies between components, and the resulting failure
patterns can be difficult to predict and explain.



Runtime Verification for Decentralised and Distributed Systems 181

At the same time, failure tolerance can be achieved by replicating components
that perform a certain task, including monitors. For example, Fraigniaud et al.
[53] study the problem of distributed monitoring with failures, where events can
be observed from more than one monitor, but the nodes where the monitors
execute can crash. The distributed monitoring algorithm then tries to reach a
verdict among the surviving monitors.

The work by Basin et al. [7] targets the incomplete knowledge caused by
network failures and message corruptions and attempts to handle the resulting
disagreements. A subsequent work investigates how to handle network failures,
and proposes algorithms that can reach verdicts when some information is miss-
ing and messages are reordered (see Basin et al. [8]). Since message losses are
also considered, this approach can also model node crashes, which are simulated
by all messages from the crashed node being lost.

Efficiency. In many distributed systems scenarios, a simple monitoring solution
can be obtained by implementing a central monitor that all other entities com-
municate with. However, distribution itself can be exploited to coordinate the
monitoring task more efficiently. Many works attempt to provide more efficient
solutions by exploiting the locality in the observations to also perform partially
the monitoring task. For example, the works by Falcone et al. [49] and by Cassar
and Francalanza [23,24], already mentioned, exploit the hierarchical structure
of the system to generate local monitors. On the other hand, Cassar et al. [25]
and Francalanza and Seychell [59,60] exploit the structure and semantics of the
correctness property from which the monitors are synthesised to generate mon-
itor organisations that use the underlying hardware efficiently. Concretely, the
generated monitors minimize idle computing units and improve memory manage-
ment via redundant monitor deallocations and monitor network reorganisations.
These works pursue a more efficient monitoring where less communication and
execution overhead is needed.

The pursuit of lowering overheads has also led Colombo et al. [36] to con-
sider distribution as a means of offloading part of the monitoring computation to
the computing resources of another machine. They provide handles that allow
the specifier to dictate whether a property is to be runtime-checked locally,
as inlined code within the monitored system, or remotely via an independent
monitoring unit located on a separate machine. In separate work Colombo
et al. [32] investigate various instrumentation techniques in Enterprise-Service
Bus (ESB) distributed architectures, so as to determine which of them lead to
lower monitoring overheads.

As observed by Bauer and Falcone [11] and in Francalanza et al. [57], when
atomic observations of the monitored system occur locally, one can organize the
monitors hierarchically according to the structure of the original specification.
This can lead to substantial savings in communication overheads because a ver-
dict of a subformula can often be reached further down hierarchically. From the
practical point of view, Bauer and Falcone [11] claim that many cyber-physical
systems, like distributed systems found in the automotive and avionics industries,



182 A. Francalanza et al.

fulfill the requirement that both observations and their placement to local nodes
are known at deployment time.

In the context of multithreaded programs with shared memory, the work
of Luo and Roşu [73] proposes to decompose a given property into local decen-
tralised monitors for each of the threads, which again helps to reduce monitoring
overheads.

Monitoring Expressivity. Some approaches borrow directly monitoring lan-
guages from non-distributed computing, and study how to exploit or adapt the
methods for distributed systems. Other approaches present new formalisms or
extend existing ones with specific capabilities for distributed systems. For exam-
ple, Sen et al. [89,90] propose a method to check for violations of safety proper-
ties in distributed systems, using a variation of LTL that is suitable to describe
(past time) properties of distributed systems. This extension essentially allows
to express the knowledge of particular agents. The work in Francalanza et al.
[57] proposes and formalizes a migrating monitor setup so as to better handle
the open-ended and dynamic nature of distributed systems. This helps monitor-
ing to adapt to locations that are learnt dynamically and to varying correctness
specifications over the course of long-running distributed computations.

The efficiency of migrating monitors is investigated by Bauer and Falcone [11]
for fixed-location setups. The subsequent work Colombo and Falcone [34] extends
these results and compares them to choreographic solutions (see Sect. 4.4).

Testing and Enforcement. Testing multithreaded programs is in general a
challenging task because often concurrency errors arise only under specific inter-
leavings and execution conditions, which are hard to cause and reproduce due
to the non-determinism introduced by the scheduler. The work by Luo and
Roşu [73], already mentioned, presents an enforcement mechanism that exploits
user-specified properties to generate local monitors that can influence the execu-
tions. This approach either (1) attempts to improve testing by forcing promising
schedules that can lead to violations; or (2) prevents violations of the specified
property by blocking individual threads whose execution may lead to a viola-
tion. This kind of enforcement is otherwise typically implemented using ad-hoc
manual synchronisation. The monitoring generation described in [73] includes
the decomposition of the property into local decentralised monitors for each of
the threads.

3 Characteristics of Distributed Runtime Verification

In this section we capture some challenges that distributed systems impose on
monitoring and the main difficulties that must be tackled by solutions to dis-
tributed runtime verification. We begin in Sect. 3.1 by describing some key char-
acteristics of distributed system monitoring, particularly following a historical
perspective. Overall, we consider 14 characteristics, denoted (C1)–(C14). Some of



Runtime Verification for Decentralised and Distributed Systems 183

them (in particular (C1)–(C5)) are common to most distributed monitoring solu-
tions, but are not typically a concern for non-distributed systems. Other criteria
are not oblivious to all distributed monitoring cases, but identify aspects that
will allow us to extract some classification dimensions, according to the approach
taken by each solution. Most of these characteristics are also either unique to
distributed systems or more challenging and important in distributed systems
than in non-distributed systems. The classification aspects are listed later in
Sect. 3.2.

3.1 Common Characteristics

Already in the late 1980s, Joyce et al. [70] identified five issues in monitoring
distributed systems, in an early attempt to characterize the key constraints that
distinguish monitoring in sequential settings from monitoring in distributed sys-
tems:

(C1) The fact that distributed systems have many foci of control ;
(C2) The presence of communication delays among nodes, which makes it diffi-

cult to determine a system’s state at any given time;
(C3) The inherent non-determinism in distributed and asynchronous systems;
(C4) The fact that monitoring a distributed system alters its behavior ;
(C5) The complexity of the interactions between the system and the system

developer.

Aspect (C1) captures the idea that a distributed system is composed of pro-
cesses running independently in distributed execution units. Issue (C2) refers
to one of the aspects of message passing systems. We will later refer to this
aspect that allows to distinguish between systems that are not synchronised (see
Global Clock below) and where messages can be unboundedly delayed or be
lost (see Failures below). Not all current research in distributed monitoring
assumes that messages can suffer independent delays. Issue (C3) refers to the
non-deterministic and asynchronous nature common to many distributed sys-
tems. Issue (C4) refers to the intrusiveness of monitoring in the system under
analysis, which is not a unique characteristic of monitoring distributed systems.
We consider here intrusiveness as a key characteristic (see Intrusiveness below).
Finally, issue (C5) refers to the additional complexity (when compared with non-
distributed systems) for the engineer exercising the monitoring infrastructure,
in terms of deploying the monitors and collecting and analysing the reported
data. We do not develop (C5) further in this chapter as we focus on runtime
verification, and not on software engineering aspects.

Another work that explores monitoring distributed systems and identifies
common and classifying criteria, by Francalanza et al. [56,57], extracts the fol-
lowing characteristics:

(C6) Difficulties in keeping a global state;
(C7) Confidentiality of the information collected and communicated;



184 A. Francalanza et al.

(C8) Trace analysis locality ;
(C9) Dynamic aspects of specifications;
(C10) Locations constitute units of failure.

Maintaining a global state in a distributed system under observation is
impractical for several reasons, captured by aspect (C6). One reason is that
sometimes it is even theoretically impossible to build and maintain a global
view, due to the lack of global clocks, asynchrony, message loss and reordering,
etc. Even when it is theoretically possible, it is common that the volume of
event messages that are required to build such a global view would substantially
increase the monitoring overhead, making it impractical. Most works recognize
that although such a central solution would greatly simplify monitoring, it is
either too complex or too intrusive. This difficulty will be captured as Global
Clock and Failures below.

Aspect (C7) is related to security (also mentioned by Falcone et al. [46]).
Every time a trace of events is communicated across locations, the confidentiality
of the information contained may be compromised. Solutions that encode and
decode this information can further increase the monitoring overhead. However,
we will not discuss this security aspects in this chapter.

Aspect (C8) refers to where the monitors are placed and where the events
from the observed system are collected. Ideally, local monitors should analyse
events locally and then communicate analysis summaries across locations. On
the other hand, placement sometimes involves additional restrictions. For exam-
ple, certain locations may not allow monitoring to be carried out locally due
to resource constraints. Placement is often at odds with locality, which some-
times involves dynamic aspects. There are cases when it is difficult to anticipate
the location where certain computations will be executed because this location
depends on some runtime information that is hard to infer statically. Aspect (C8)
is related to the distribution of the monitoring process, and in particular refers
to the preference of decentralizing it (see Centralisation below).

Aspect (C9) considers that in long-running applications without a central
authority, correctness specifications may not be all available prior to deploy-
ment. Some specifications are added at runtime, while the system is already
executing, which disables the static placement of monitors. Dynamic aspects of
monitoring are considered in (C8) and (C9), caused by either unpredictable
aspects at deployment time, or constraints in the execution platform which
restrict installing monitors dynamically. Finally, aspect (C10) considers again
the issue of failures (see Failures below).

In a recent short paper, Bonakdarpour et al. [20] discuss the following four
issues as distinctive, characteristic challenges of distributed runtime verification:1

(C11) Modeling a distributed RV system (particularly the system under obser-
vation);

1 The distributed RV considered in Bonakdarpour et al. [20] is a general monitor-
ing solution that runs on an infrastructure that is unreliable and unable to solve
consensus.



Runtime Verification for Decentralised and Distributed Systems 185

(C12) Defining and evaluating distributed correctness specifications;
(C13) Using different verdicts on the state of the monitored system;
(C14) Giving semantics to the different verdicts.

Aspect (C11) concerns both the actual implementation of a distributed sys-
tems’s description (including whether it is used in the monitoring process, see
issue Exploiting System Description below), as well as efforts devoted to
describing the monitoring solutions (see Sect. 4). It is well-known that describ-
ing precisely the semantics of distributed systems is more difficult than when
centralised systems are considered. Aspect (C12) is related to the formalism
used to describe monitors (see Distributed Specifications). Finally, the last
two issues (C13) and (C14) are more specific to the solution provided in [20].
The first issue (C13) states that local monitors need to emit verdicts from richer
domains, not just Boolean values, due to the necessary amount of information
that needs to be collected and combined. This aspect has already been witnessed
in monitoring non-distributed systems using LTL3 (see Bauer et al. [13]), where
the semantics of LTL for finite traces is expressed using a 3 valued domain (the
third value captures the possibility of expressing an unknown verdict, which may
become later true or false when new observations are made). Issue (C13) refers
to the use of multi-valued domains as verdicts emitted the local monitors in the
distributed systems. Issue (C14) refers to how these multiple verdicts can be
combined during the creation of a final verdict.

3.2 Distinguishing Characteristics

We now list six dimensions that will allow us to distinguish the different lines of
research and classify the solutions proposed.

Exploiting System Description. Most work in RV focuses on building moni-
tors that can analyse any system (under some general assumptions), that is, the
system is consider as a black-box that emits the necessary signals to the moni-
tors. On the other hand, some other approaches exploit the system’s description
to generate specialised monitors. Examples of system’s descriptions proposed
include models of the system, abstractions or even full descriptions as programs.
In this case, the monitors generated are only guaranteed to be correct for the
specific system analysed, and in case a different system is finally deployed with
the monitor, the verdicts of this monitor may not be correct. On the other hand,
solutions that consider the system as a black-box generate monitors that are
correct for every system (that fulfills some general assumptions) at the price
of potentially less efficiency. For example, algorithms that generate monitors as
finite state machines from LTL specifications work for all systems as sources of
traces. If the monitor can rule out certain paths using concrete facts of the sys-
tem under observation, obtained by static analysis for example, then the monitor
can be specialised into a smaller finite state machine.

In some cases only certain aspects of the system description are used to build
the solution, like the number of distributed nodes, the location of the individual
predicates emitted by the running system, or the topology of the network.



186 A. Francalanza et al.

Centralisation. Even if the system under observation is intrinsically dis-
tributed, the monitoring task can be performed in a central location that collects
information from the remote units. However, solutions with a central monitor
have many drawbacks from the points of view of overhead, efficiency, tolerance to
faults and security. For these reasons, many solutions attempt to divide the mon-
itors into local monitors and perform part of the monitoring activities locally, in
a distributed fashion.

Global Clock. There are two large classes of distributed runtime verification
techniques depending on whether it is assumed that all nodes have access or
not to a global clock (or to perfectly-synchronised local clocks). In case a global
clock is assumed, the system under analysis is equivalent to a synchronous system
(following distributed computing terminology). In this case, we call the problem
decentralised monitoring. Similarly, when monitors do not have access to a global
clock we refer to the problem as distributed monitoring. Another characteris-
tic feature of monitoring distributed systems is asynchrony, both between the
monitors and the distributed system under scrutiny, and among the distributed
monitors themselves.

Monitoring a distributed system often amounts to monitoring a message pass-
ing system. We reserve the term non-distributed systems for those systems that
have a global clock and direct access shared memory between all computational
units. For example, parallel systems (as defined above) are non-distributed sys-
tems with several concurrent execution units.

Distributed Specifications. One key classification criteria is whether the
specification language from which monitors are generated has specific features
for distributed systems, that is whether the formalism allows to refer to charac-
teristics of the distributed platform. Some approaches borrow directly a language
originally proposed for non-distributed systems, like LTL, and attack the prob-
lem of monitoring distributed systems against specifications written in this lan-
guage. Other approaches start by introducing a modified specification language
with some distributed feature, and then develop specific monitoring algorithms
for this language.

Failures. In practice, both non-distributed and distributed systems are subject
to failures. However, failures in distributed systems can be more subtle than in
non-distributed systems due to the physical independence of the executing units.
Even though most monitoring solutions assume that no component can fail, some
approaches consider the possibility of some part of the distributed system failing.
In particular, some of the failing aspects considered are network delays in the
transmission of the messages, message loss or duplication, message corruption
and node crashes. Even though Byzantine failures have been thoroughly studied
in distributed systems, this aspect has received little attention in the area of
monitoring distributed systems.



Runtime Verification for Decentralised and Distributed Systems 187

Intrusiveness. As already identified in early surveying efforts (see (C4) above),
the monitoring process typically modifies the behavior of the monitored sys-
tem. Naturally, most works focus on the effectiveness of the monitoring solu-
tion proposed, that is, on proving that the monitoring process actually detects
the intended property. Some research also considers the efficiency of the com-
bined solution (in terms of running time, number of messages, etc.) and in some
few cases how the monitoring process affects the running system (that is, how
intrusive monitoring is). Moreover, some works are intrusive on purpose, try-
ing to reduce the intrinsic non-determinism of the running system with the
goal of avoiding failures (like in enforcement) or provoking failures (for testing
purposes).

4 Monitor Organisations

In this section we explain and compare the various ways in which monitoring
distributed system activities can be organised. The various monitoring organisa-
tions can be explained in terms of the different configurations used to compose
these components together as a monitoring infrastructure contributing towards
a common goal.

The analysis of correctness properties concerning different processes, possibly
spanning across different locations, often requires the aggregation of traces into
composite traces. We will generally assume that the composition of two remote
traces does not necessarily yield a total ordering among the events of the resulting
composite trace, but instead gives a partial ordering. Monitors can communicate
with each other to coordinate the monitoring task.

4.1 Traditional Monitoring

A traditional monitoring setup, depicted in Fig. 1, typically consists of a group
of processes (P1, P2 and P3 in the figure) that reside at one location (l). These
processes generate a single local trace (T1) that is analysed by a single monitor
(M1), also located at the same location. Even if these processes execute con-
currently and are subject to a different interleaving every time the system is
executed, the monitoring setup will always report a trace with a total ordering
of events reflecting the executed interleaving.

4.2 Decentralised Monitoring

As depicted in Fig. 2, a decentralised monitoring setup resembles traditional
monitoring in that all process executions and trace events are governed by a sin-
gle global clock. Moreover, processes and monitors can communicate using syn-
chronous channels, and computations are totally ordered. Consequently, traces
can also be totally ordered, either explicitly as one data structure or locally by
using time-stamps.



188 A. Francalanza et al.

interaction interaction
P1 P3

T1

P2

M1

l

Fig. 1. A traditional (centralised) monitoring setup where processes P1, P2 and P3

generate a single trace T1 observed by a single monitor M1. The interaction between
processes illustrate that processes may communicate or synchronize, even though it is
not assumed that they do (as P1 with P3 in the figure).

Fig. 2. In a decentralised monitoring setup the synchronised trace T1 can be processed
by several independent monitors. Now monitors can interact (like M1 and M2, and M2

and M3) but are not required to (like M1 and M3). Also, monitors and processes can
be placed at different locations that share a global clock (l and k in the figure).

In contrast to traditional monitoring which is typically performed by a sin-
gle monolithic monitor, monitoring in a decentralised and distributed setup
is decomposed into different sub-components (M1,M2,M3) reflecting the fact
that a global correctness property may be decomposed into smaller properties.



Runtime Verification for Decentralised and Distributed Systems 189

P1

T2

T1

P2

M1

P1

M2

T3

M3

l

P3

k

g

Fig. 3. In an orchestrated monitoring setup, traces are independently produced locally
at the location of processes, but can be processed by remote monitors.

For instance, in cases where trace events may be attributed to different system
units (e.g. classes or objects), each monitor may selectively analyse events per-
taining to a particular unit entity (e.g. all the method call invocations on a par-
ticular object) and then communicate aggregate monitoring information to other
monitors in order to verify a global property. It is common that sub-monitors
reflect some decomposition of the specification, but sometimes sub-monitors are
obtained directly by the placement of parts of the specification into locations
without much decomposition.

There are also cases in which the correctness properties are inherently sepa-
rate and concern only a subset of processes as in the case of parametric monitor-
ing where the property can be evaluated independently for different parameter
instances (see, e.g., Chen and Roşu [31]). In this case, monitoring may be decen-
tralised in a natural manner without the need for the individual monitors to
communicate.

4.3 Orchestrated Monitoring

Orchestrated and choreographed monitoring approaches are used in settings
where more than one process is dispersed across more than one location. The
set of processes generate more than one trace that can only be partially ordered
due to the absence of a global clock.

In an orchestration all monitoring is ultimately performed centrally by a
single monitor, accessing the respective trace events from different locations. The
approach is depicted in Fig. 3, which shows two sub-systems located at l and k,
each producing local traces of events (T1, T2 and T3 respectively), subsequently
analysed by monitors M1,M2 and M3 from a remote location g. Each of these
monitors analyse an independent correctness property.

On the one hand, the centralisation of the analysis simplifies the logic of the
monitor, which is conducive to a decrease in errors in the monitor code itself.
However, these benefits come at a cost in distributed settings such as the one



190 A. Francalanza et al.

P1

T2

T1

M1

P1

l

P3

h

P4 T4

M2 M3

T3

P2

k

Fig. 4. In an choreographed monitoring setup, traces are independently produced
locally at the location of processes and can be processed by different monitors inde-
pendently.

depicted in Fig. 3. First, the approach leads to a substantial increase in the vol-
ume of trace information which has to be transmitted remotely for monitoring.
The considerable increase in communication overhead across locations affects
monitoring scalability when the number of processes and locations increases.
The approach is also susceptible to data exposure when the trace events trans-
mitted across locations contain private information. Adding additional security
layers via mechanisms such as encryption further increases the monitoring over-
head. Finally, the architecture poses a security risk by exposing the monitor as
a central point of attack from which sensitive information can be tapped. Never-
theless, restricted forms of the orchestrated monitoring approach can be suitable
when dealing with public information that is communicated over a relatively safe
medium.

4.4 Choreographed Monitoring

A choreographed monitoring approach also targets system settings consisting
of multiple processes dispersed across more than one location. In contrast to
orchestrated monitoring, choreography-based approaches push the runtime veri-
fication activities locally to the location where the traces are generated, as shown
in Fig. 4. The diagram depicts four processes, located at three locations l, k, and
h, each generating local traces, with monitors M1, M2 placed at l, and M3

placed at k. The monitor decomposition is not only due to the independence of
the correctness properties being checked. In fact, monitors M2 and M3 could be
verifying the same global property and eventually interact with each other in
order to synchronize their monitoring effort.

The appeal of localizing monitoring is the potential minimisation of data
exposure and communication overhead. By verifying locally, we avoid having to



Runtime Verification for Decentralised and Distributed Systems 191

transmit trace information to a remote monitor. Moreover, localised monitors
typically require less communication than remote monitoring using a central
monitor. However, choreography is more complex to instrument, since correct-
ness properties need to be decomposed into coordinated local monitors. Fur-
thermore, choreographed monitoring is also more intrusive, by burdening the
monitored subsystems with additional local computation, and is thus applicable
only when the hosting locations allow local instrumentation of monitoring code.

5 Instantiations

In this section we describe and compare research solutions proposed in the litera-
ture, using the characteristics captured in Sect. 3 and the organisations described
in Sect. 4. To ease the description we group the papers as follows:

– Decentralised Monitoring
– Distributed Monitoring
– Fault Tolerance
– Monitor Decomposition
– Predicate Detection for Distributed Systems
– Intrusiveness
– Behavioral Type Systems for Distributed Monitoring

Other features cross-cut papers across different characteristics and are men-
tioned in each particular case. Tables 1 and 2 summarize the papers according
to the main characteristics considered. In the characteristics shown in the tables,
Global Clock, Failures, System Description, Distributed Specs and
Intrusiveness are directly characteristics captured in Sect. 3. Asynchronous
Msgs refers to whether the underlying platform is a message passing system.
Asynchronous Msgs, Decentralised Monitoring and Distributed Mon-
itoring are characteristics considered within Global Clock in Sect. 3.

The entries LTL and Predicate Detection are included because these spec-
ification languages have been thoroughly considered in many works. Finally,
Types refer to a line of research based on process algebras and session types.

Decentralised Monitoring. Bauer and Falcone [11,12] study the problem
of decentralised monitoring. The starting point is a specification expressed in
LTL without any specific extension for distributed systems, except for the static
mapping of atomic predicates to individual processes. Note that individual state
predicates of the specification may be split into more than one process. The
solution synthesizes a monitor for each process, under the assumption that com-
ponents communicate synchronously with a global clock. Each component has a
local monitor attached, and emits events synchronously after every global clock
tick. By design, the solution to a verdict is taken as combination of the execution
of the local monitors, lacking a central decision-making point. This work is later
generalised by Falcone et al. [46] beyond LTL to cover all regular languages.



192 A. Francalanza et al.

Table 1. State-of-the-art on distributed monitoring. Each paper is classified according
to the characteristics considered (part 1).

Publication year G
lo

b
a
l
C
lo

c
k

A
s
y
n
c
h
o
n
o
u
s
M

s
g
s

D
e
c
e
n
t
r
a
li
s
e
d

M
o
n
it
o
r
in

g

D
is
t
r
ib

u
t
e
d

M
o
n
it
o
r
in

g

F
a
il
u
r
e
s

S
y
s
t
e
m

D
e
s
c
r
ip

t
io

n

D
is
t
r
ib

u
t
e
d

S
p
e
c
s
.

L
T
L

P
r
e
d
ic
a
t
e

D
e
t
e
c
t
io

n

In
t
r
u
s
iv

e
n
e
s
s

T
y
p
e
s

Bauer and Falcone [11] 2012 ✓ · ✓ · · · · ✓ · · ·
Bauer and Falcone [12] 2016 ✓ · ✓ · · · · ✓ · · ·
Colombo and Falcone [33] 2014 ✓ · ✓ · · · · ✓ · · ·
Colombo and Falcone [34] 2016 ✓ ✓ ✓ · · · · ✓ · · ·
Falcone et al. [46] 2014 ✓ · ✓ · · · · · · · ·
Bartocci [6] 2013 ✓ ✓ ✓ · · · · ✓ · · ·
Sen et al. [89] 2004 · ✓ · ✓ · · ✓ ✓ · · ·
Francalanza et al. [56] 2011 · ✓ · ✓ · ✓ · · · · ✓

Francalanza et al. [57] 2013 · ✓ · ✓ · ✓ · · · · ✓

Basin et al. [7] 2013 ✓ · · · ✓ · · · · · ·
Basin et al. [8] 2015 ✓ ✓ · ✓ ✓ · · · · · ·
Fraigniaud et al. [53] 2014 · ✓ · · ✓ · · ✓ · · ·
Bonakdarpour et al. [19] 2016 · ✓ · · ✓ · · ✓ · · ·
Falcone et al. [49] 2015 · · · · · ✓ · · · · ·
Bonakdarpour et al. [17] 2010 · ✓ · · · ✓ · · · · ·
Bonakdarpour et al. [18] 2010 · ✓ · · · ✓ · · · · ·
Berkovich et al. [14] 2015 ✓ · · · · · · ✓ · ✓ ·
Francalanza and Seychell [59] 2013 · ✓ · ✓ · · · · · · ·
Francalanza and Seychell [60] 2015 · ✓ · ✓ · · · · · · ·
Attard and Francalanza [3] 2016 · ✓ · ✓ · · · · · · ·
Chase and Garg [29] 1998 · ✓ · · · · · · ✓ · ·
Cooper and Marzullo [37] 1991 · ✓ · · · · · · ✓ · ·
Garg and Waldecker [64] 1994 · ✓ · · · · · · ✓ · ·
Garg and Mittal [63] 2001 · ✓ · · · · · · ✓ · ·
Mittal and Garg [78] 2005 · ✓ · · · · · · ✓ · ·
Mittal et al. [79] 2007 · ✓ · · · · · · ✓ · ·
Sen and Garg [88] 2007 · ✓ · · · · · · ✓ · ·
Ogale and Garg [83] 2007 · ✓ · · · · · ✓ ✓ · ·
Chauhan et al. [30] 2013 · ✓ · ✓ · · · · ✓ · ·
Mostafa and Bonakdarpour [80] 2015 · ✓ · ✓ · · · ✓ ✓ · ·
Sen and Garg [86] 2003 · ✓ · · · · · ✓ ✓ · ·
Luo and Roşu [73] 2013 ✓ · ✓ · · ✓ · · · ✓ ·
Cassar and Francalanza [22] 2014 · ✓ · ✓ · · · · · ✓ ·
Zhang et al. [93] 2016 · ✓ · ✓ · · · · · ✓ ·
Colombo et al. [36] 2012 · ✓ · · · · · · · ✓ ·



Runtime Verification for Decentralised and Distributed Systems 193

Table 2. State-of-the-art on distributed monitoring. Each paper is classified according
to the characteristics considered (part 2).

Publication year G
lo

b
a
l
C
lo

c
k

A
s
y
n
c
h
o
n
o
u
s
M

s
g
s

D
e
c
e
n
t
r
a
li
s
e
d

M
o
n
it
o
r
in

g

D
is
t
r
ib

u
t
e
d

M
o
n
it
o
r
in

g

F
a
il
u
r
e
s

S
y
s
t
e
m

D
e
s
c
r
ip

t
io

n

D
is
t
r
ib

u
t
e
d

S
p
e
c
s
.

L
T
L

P
r
e
d
ic
a
t
e

D
e
t
e
c
t
io

n

In
t
r
u
s
iv

e
n
e
s
s

T
y
p
e
s

Colombo et al. [35] 2011 · ✓ · ✓ · · · · · ✓ ·
Cassar and Francalanza [24] 2016 · ✓ · ✓ · · · · · ✓ ·
Bocchi et al. [15] 2013 · ✓ · ✓ · · ✓ · · · ✓

Bocchi et al. [16] 2017 · ✓ · ✓ · · ✓ · · · ✓

Hu et al. [67] 2013 · ✓ · ✓ · · ✓ · · · ✓

Demangeon et al. [41] 2015 · ✓ · ✓ · · ✓ · · · ✓

Neykova et al. [82] 2013 · ✓ · ✓ · · ✓ · · · ✓

Neykova et al. [81] 2014 · ✓ · ✓ · · ✓ · · · ✓

Jia et al. [69] 2016 · ✓ · ✓ · · ✓ · · ✓ ✓

Di Giusto and Pérez [42] 2015 · ✓ · ✓ ✓ · ✓ · · ✓ ✓

Di Giusto and Pérez [43] 2016 · ✓ · ✓ ✓ · ✓ · · ✓ ✓

Castellani et al. [26] 2014 · ✓ · ✓ ✓ · ✓ · · ✓ ✓

Castellani et al. [27] 2016 · ✓ · ✓ ✓ · ✓ · · ✓ ✓

Mezzina and Pérez [75] 2016 · ✓ · ✓ · · ✓ · · ✓ ✓

Mezzina and Pérez [76] 2017 · ✓ · ✓ · · ✓ · · ✓ ✓

The main advantage of a decentralised solution over a non-distributed one
is that not all events must be sent to the location of the central monitor. The
challenge is that local monitoring must be performed with only partial observa-
tions of the global trace. The algorithm progresses by rewriting the specification
at each node, with the partial information available. When local monitors are
unable to evaluate a specification given their local view of the computation, they
communicate their residual formulas to the other monitors. An alternative app-
roach would use a central monitor that receives information about the local states
of all other locations. One of the main practical concerns is how the decentralised
approach compares with this alternative central approach. The empirical evalu-
ation reported by Bauer and Falcone [11,12], Falcone et al. [46] suggests that the
overhead introduced is lower in the distributed solution. There is also an eco-
nomic advantage in the decentralised solution, because in a distributed solution
there is no need to add a central processor. Practical applications of this app-
roach involve monitoring the behavior of embedded systems that are distributed
by nature, like cars and airplanes where the different distributed components are
known upfront. These include typical field-busses like EtherCAT, ProfiBus and



194 A. Francalanza et al.

ProfiNet (also known as “Industrial Ethernet” [50]). In these systems, processes
communicate over a synchronous bus, so the global clock assumption is justified.

Bartocci [6] extends the work by Bauer and Falcone [11] to real-time embed-
ded systems by considering the maximum duration of the computation and com-
munication. The main result is the ability to calculate a sampling ratio above
which the decentralised monitoring process is guaranteed to generate the correct
outcome.

The works by Colombo and Falcone [33,34] start from similar assumptions
and goals: there is a global clock and one local monitor per executing component.
The number of executing components is also known upfront. The work in [34]
removes the assumption of instantaneous communication from Colombo and
Falcone [33] and enables a solution with reliable messages with any delay. Still,
a global clock is assumed because the specification logic is LTL and individual
predicates sensed are totally ordered. The solution proposed is a choreographed
decentralised monitoring algorithm, where each local monitor senses a collection
of local predicates. The local monitors use the rewriting approach (also known
as formula progression) by which the state of the monitor is the LTL formula
that results by expanding the LTL formula to the residual formula in the next
state, simplified with the acquired knowledge. A key element in the solution is
that a network of monitors is statically built by assigning each subformula of the
original formula to a node in the distributed system. The hierarchical description
inherent by the sub-formula relation in turn dictates the communication pattern
between the local monitors. Consider a formula ψ and let ϕ be a sub-formula
of ψ. The monitor M1 for ϕ informs the monitor M2 for ψ about the verdict of
ϕ which, in turn, is used by M2 to compute the verdict of ψ. If a synchronous
clock is assumed, the root formula verdict is guaranteed to be reached within at
most k steps of delay, where k is the height of the original formula.

Distributed Monitoring. Sen et al. [89] propose a method to detecting viola-
tions of safety properties in an asynchronous distributed system, where no global
clock is assumed. The method proposed generates, given a specification, local
monitors for all distributed nodes. These local monitors communicate only by
piggybacking additional information in the messages sent by existing processes
in the system, so the shape of the history of messages exchanged is not modified
by the actions taken by the monitors. The logic used in Sen et al. [89] extends
past time LTL with features for distributed systems, in particular an operator
@jϕ, which captures the most recent value of formula ϕ according to process j.

The algorithm uses vector clocks (see Lamport [71], Mattern [74] and Fidge
[51,52]) to transmit the most recent value of sub-formulas needed to compute the
outcome of their containing formulas. Then, at deployment time, the monitor
specification is decomposed into local monitors that collect information locally
and compute the current value of formulas, based on this local information and
on the information received in messages about the causal past of remote pro-
cesses. This approach allows to generate monitors without inspecting the internal
behavior of each process.



Runtime Verification for Decentralised and Distributed Systems 195

Francalanza et al. [56,57] present a formal model for distributed monitoring.
System computations are described as π-calculus processes (Milner et al. [77])
hosted at different locations and interacting with one another via message pass-
ing. When systems compute, they generate residual trace events that are only
locally ordered (with respect to the other events generated at the same location)
but globally unordered (with respect to events generated at other locations),
thereby modeling the absence of global clocks. Distributed monitors, also residing
a different locations, are then tasked with analysing local traces and interacting
with one another in order to perform a global analysis of system computation.
The model is equipped with a bisimulation-based equivalence relation that is
used to reason about different distributed monitoring strategies such as those
discussed in Sect. 4. The model is also used to define and evaluate a new migrat-
ing monitor strategy that better handles the dynamic nature of open distributed
systems.

Fault Tolerance. Not many works attack the problem of monitoring dis-
tributed systems considering that components can fail. Notable exceptions are
the works by Basin et al. [7,8], and by Fraigniaud et al. [53] and Bonakdarpour
et al. [19].

Basin et al. [7] present a policy language, a variant of FOLTL with three-
valued semantics, and an algorithm that allows to reason about incomplete
knowledge and handle disagreements. The main practical motivation is to han-
dle errors in the observed trace, for example due to corruption or loss of part
of logs files in complex IT systems, crashes in running systems, or network fail-
ures. Another motivation is to reconcile different views or verdicts obtained from
monitors that observe different parts of the logs. The key idea is to equip the
execution with features to enable monitors to distinguish between an event not
being observed and the event not existing at all. The authors claim that any
approach that solves this problem must satisfy that, once a definite verdict is
given, providing more compatible information cannot retract the definite ver-
dict. They manage to provide a complete algorithm for a fragment of the policy
language. A similar work on compliance checking is Garg et al. [61]. Even though
these works do not explicitly handle distributed systems, they handle runtime
verification under incomplete information and incorrect information, which can
be used to encode problems for distributed systems.

Influenced by [7], Basin et al. [8] consider the problem of monitoring dis-
tributed systems in the presence of network failures. The authors also consider
the case that the monitor itself is distributed for the purposes of efficiency, per-
forming the monitoring computation closer to the observation point and reducing
the communication overhead. The paper [8] deals with Metric Temporal Logic
(MTL), a logic that allows to express real-time properties. The algorithm is
designed based on the timed asynchronous model for distributed systems (see
Cristian and Fetzer [39]), which assumes the availability of highly-synchronised
local clocks but permits crash failures in the processes and in the network.
Another assumption is that components are known at deployment time.



196 A. Francalanza et al.

In [8] processes time-stamp their observation before communicating them to
the local monitors. The time-stamp allows components to compute precise delays
between events, and to totally order the events. It is interesting to point out that
even without failures, reliable asynchronous networks allow messages to arrive in
different orders. Forcing messages to arrive in order requires buffering messages
to ensure proper delivery order, which in turn prevents the early detection of
some violations that would be possible with out-of-order delivery. The algorithm
in Basin et al. [8] uses a richer value to encode the absence of knowledge when
evaluating part of the specification. When the missing information is finally
received, the monitor can precisely resolve the uncertainty. Sometimes, a monitor
can reach a precise verdict only with the partial information received in a timely
manner. Consequently, the algorithm can monitor MTL properties tolerating the
out-of-order arrival of partial observations.

Concerning organisation, the monitors in [8] are distributed in a directed
acyclic graph (DAG) where each monitor handles a subformula of the given for-
mula, and children nodes handle subformulas of the formula handled by their
parent node. The root of the DAG handles the original formula. During execu-
tion, messages are sent from children to parent monitors to inform about the
verdicts reached in the subformula handled at the given point in time. When
a process performs an atomic observation it also equips the time-stamp with
an additional sequence number, which is locally unique. This sequence num-
ber allows monitors to infer the existence or absence of unknown intermediate
samples between two observations. Intermediate nodes can also send heart-beat
messages, which serve the purpose of informing about the absence of verdicts
and the health of the intermediate node. Heart-beats also allow to infer the exis-
tence or absence of intermediate meaningful observations or verdicts, and in turn
compute timeouts.

The problem of distributed monitoring for asynchronous distributed systems
with node crashes is considered by Fraigniaud et al. [53] and Bonakdarpour
et al. [19]. Monitors can either work correctly or fail, but after a fail, monitors
do not perform any action for the reminder of the execution. The solution is
based on the asynchronous “wait-free” communicating infrastructure. It is well
known from the research area of distributed algorithms that the wait-free model
of computation (see Attiya and Welch [4]) can simulate many other models of
crash-fail asynchronous distributed systems. The main result in [19,53] is an
algorithm and a lower-bound on the number of different verdicts that monitors
need to communicate with each other to correctly detect the violation of an LTL
property. The lower bound on the number of verdicts reveals that monitors need
to communicate complex information in order to compute a global outcome.
The final verdict reached by the cooperating monitors, in turn, will be that of
LTL3. The following three options are possible: (1) the property is satisfied in all
continuations; (2) the property is violated in all continuations; (3) the outcome
is unknown. These papers do not assume that the observations of the distributed
monitors are disjoint. Even though monitors may only be observing part of the
global input alphabet, several monitors may overlap in their partial observation.



Runtime Verification for Decentralised and Distributed Systems 197

Monitor Decomposition. Falcone et al. [49] target the problem of monitor-
ing component based-systems, that is, systems that are described by the com-
position of components. More precisely, in [49] systems are described using the
Behavior-Interaction-Priority (BIP) component-based framework (see Basu et al.
[9]). Even though this paper does not attack explicitly the problem of monitor-
ing a distributed system, it is nowadays well understood that component-based
descriptions can be compiled into distributed implementations (see Bonakdarpour
et al. [17,18]). Consequently, the monitors generated at the component level fol-
lowing [49] are attached to the system generating a modified BIP description that
can subsequently be compiled into a distributed system.

Monitor decomposition for decentralised monitoring can also be inferred
from the specification formula from which a monitor is synthesised. This line of
research is explored extensively by Francalanza and Seychell [59,60] and Attard
and Francalanza [3] for both safety and co-safety properties of logics involving
conjunctions, disjunctions and recursion. Conjunctions and disjunctions are syn-
thesised into concurrent monitors that analyse sub-parts of the system, whereas
recursion leads to the dynamic generation of concurrent monitors, generated
lazily only when required to minimize monitoring overheads. In every case, the
concurrent monitors generated lead to self-contained localised monitoring that
can be readily distributed. The automated synthesis function is proved correct
in each of these cases (see Francalanza et al. [55] for the correctness proof in
[3]). The work by Cassar et al. [25] considers a refined implementation where
the concurrent sub-monitors cooperate among themselves and reorganize their
interconnection so as to optimize the resources used for monitoring, thus reduc-
ing monitoring overheads.

Predicate Detection for Distributed Monitoring. Predicate detection (see
Chase and Garg [29]) consists on checking whether a certain predicate occurred
during the distributed execution, or more formally, whether the predicate holds
in some consistent cut of the execution. In this context, predicates are state for-
mulas (and consequently safety properties) even though some work has extended
predicate detection to richer temporal formulas (see below for details).

All algorithms for predicate detection assume that the collection of executing
processes is known a-priori, that processes do not fail and that all messages even-
tually arrive. Predicate detection can be performed offline, when all events are
available before the detection algorithm starts running, or online, when one event
at a time is processed. There are three main techniques for predicate detection.
The first technique uses the global snapshots proposed by Chandy and Lamport
[28], which can only detect stable predicates, which are predicates that remain
true after becoming true (like termination, but unlike mutual exclusion). The
second technique consists in an explicit construction of the lattice of global states
proposed by Cooper and Marzullo [37]. This technique can detect unstable pred-
icates but it is exponential in the number of local states and processes. Finally,
the third technique exploits the specific structure of the predicate to provide
efficient solutions. Examples include conjunctions of local predicates (Garg and



198 A. Francalanza et al.

Waldecker [64]) and relational predicates of the form
∑

i xi < C, where xi are
local variables.

Even if one had access to all the local histories of the execution of all pro-
cesses, detecting a predicate is hard because—for general Boolean formulas—one
needs to enumerate and search all possible interleavings of the local executions.
Chase and Garg [29] show that detection of 2-CNF predicates is an NP-hard
problem, even when assuming a central monitor. A solution to this explosion
problem is a technique called slicing (see [63]). Slices are abstractions of the
computation that guarantee that the predicate is detected in a slice if and only
if the predicate holds in some consistent cut of the original computation. Com-
puting a slice for a general predicate is still an NP-hard problem, shown by Mittal
and Garg [78], but when efficient slices exist, these are much smaller than actual
explicit histories. Consequently, a line of work has focused on identifying classes
of predicates for efficient slicing procedures exist. These slices are based on frag-
ments of the logic used to express the global state predicates. These fragments
include regular, co-regular, linear, relational and stable predicates (see Mittal
and Garg [78], Mittal et al. [79], Sen and Garg [88], Ogale and Garg [83]). Some
of these solutions construct the slices offline, assuming that the whole histories
are available to the slicing algorithms, while others work online, building the
slice incrementally. Similarly, most of the solutions are still centralised (Cooper
and Marzullo [37], Mittal et al. [79], Sen and Garg [88], Mittal et al. [79]) in the
sense that all histories are sent to a central monitor that computes the slice and
detects the predicate.

The first distributed solution to slice-based predicate detection is by Chauhan
et al. [30]. The solution is online and distributed, in the sense that the slicing
is computed by the distributed monitors. The guarantee is that if the predicate
exists in a consistent cut of the computation, then it is detected by some moni-
tor. The algorithm exploits both the structure of the property ([30] study regular
properties) and epistemic information about what the knowledge that the dif-
ferent monitors acquire.

Also, even though most approaches are restricted to state predicates (or
more precisely, fragments of the propositional logic for state predicates), some
approaches tract richer temporal properties. For example, Sen and Garg [87],
Ogale and Garg [83] present methods for sliced based predicate detection for a
fragment of temporal logic that includes invariants (AG) and possible reachable
(EF) operators, which extends the applicability beyond safety properties into
a subclass of CTL formulas called Regular CTL (see Sen and Garg [86]). The
restrictive use of negation in [87] is relaxed in [83]. Even though the work in
[83,87] is applicable to a richer fragment of temporal logic, these algorithms
work with a central monitor.

More recently, Mostafa and Bonakdarpour [80] provide a solution for
monitorable LTL3 temporal properties, but in this case extending the work
of Chauhan et al. [30] so the solution obtained is distributed. This solution
inserts additional messages in the network and is not restricted to only piggy-
backing information in existing messages.



Runtime Verification for Decentralised and Distributed Systems 199

Intrusiveness. It is often desirable that the monitoring process perturbs the
execution of the system under analysis in the least possible manner. Typically,
either the system is instrumented by embedding monitors in the code itself, or
monitors and processes share resources because they execute in the same plat-
form. These changes affect the behavior of the system, sometimes in a significant
manner.

Berkovich et al. [14] propose to use additional hardware, and in particular a
GPU parallel execution platform, to minimize the impact of online monitoring.
The authors show how to generate parallel monitors from temporal logic spec-
ifications and evaluate empirically that the obtained parallel monitors together
with the additional GPU hardware alleviate the effect of monitoring on the exe-
cution of the original system. This is a parallel solution (and not a message
passing distributed solution) to reduce the intrusiveness of monitoring.

Other times, it is desirable that the monitoring process perturbs the execu-
tion of the system. One example is runtime enforcement, where the objective of
the “monitoring” is to guarantee that the system stays within a safe region of
states. Consequently, the enforcement system uses the information provided by
the monitor to prevent an error before it occurs (see the chapter in this mono-
graph about runtime enforcement). Another example is testing of multithreaded
programs, which is in general a very hard task, due to the non-deterministic
nature of the execution of concurrent programs, and the difficulty to reproduce
erroneous behaviors. In this context it is desirable to guide the system towards
executions that are more likely to produce an error. The work by Luo and Roşu
[73] consists of an enforcement mechanism that uses user-specified monitors to
generate local monitors. Such local monitors block individual threads that violate
the specified properties. This enforcement pursues two objectives: (1) to guar-
antee the enforcement of properties in a multi-threaded program in a systematic
way, which is typically implemented using ad-hoc synchronisation manually; and
(2) to force schedules that test properties during the testing of multithreaded
programs. The monitor generation described in Luo and Roşu [73] includes the
decomposition of the property into local decentralised monitors for each of the
threads.

The body of work by Roşu and Havelund [85], Cassar and Francalanza [22],
Zhang et al. [93] explores the idea of decoupling the execution of monitors from the
systems under scrutiny. This approach uses a mixture of synchronous and asyn-
chronous monitoring, in order to obtain a feasible instrumentation setup that dis-
tribute monitors and systems at different locations, such as in the case of Colombo
et al. [36] and other orchestrated monitoring setups. Asynchronous monitoring,
used in various monitoring tools such as Colombo et al. [35], Francalanza and
Seychell [60], Zhang et al. [93], Attard and Francalanza [3], minimizes monitor
intrusiveness because it requires less instrumentation effort. Moreover, Cassar
and Francalanza [22], Zhang et al. [93] show that this method of instrumentation
can substantially reduce monitoring overhead. By using hybrid solutions, they also
show how one need not compromise on the timeliness of detections.



200 A. Francalanza et al.

Cassar and Francalanza [23,24] extend the concept of non-intrusiveness to
runtime adaptation via hybrid asynchronous monitoring. The goal is to design
monitors that intervene with the execution of the system under scrutiny, and
apply these interventions (i.e. system adaptations) with minimal overheads. In
particular, the work [24] implements a framework where the monitors for system
components can act at varying degrees of synchrony with respect to the observed
components. Some parts of the system can be executed in a decoupled fashion
with their monitors when no adaptations on that sub-system are required. Later,
these sub-systems can be incrementally synchronised with the respective monitor
when an adaptation is about to be applied. The entire framework is implemented
atop a completely asynchronous actor computational model, which eases the
distribution over remote locations.

Behavioral Type Systems for Distributed Monitoring. In this subsection
we describe the work in process calculus related to studying the monitoring of dis-
tributed systems. Many large-scale systems consist of heterogeneous, distributed
software artifacts (processes) that interact following some precise protocols. In
these communication-centric settings, processes communicate asynchronously,
without a global clock, and are prone to local failures. These characteristics
make distributed monitoring a suitable approach to enforce system correctness
by complementing the static verification techniques that are typically applied
individually to each process. As we detail next, monitoring for communication-
centric systems is an instance of the choreographed monitoring organisation
described in Sect. 4.

A productive research strand to the analysis of communication-centric
software systems uses process calculi (such as the π-calculus) as minimal
specification languages. These formal calculi provide an unambiguous setting
in which the communication correctness of these systems can be composition-
ally established. In particular, coupling process calculi with so-called behavioral
type systems allows to (statically) enforce safety and liveness properties associ-
ated to protocol conformance. Rather than classifying data values, behavioral
types define abstractions of the protocols that a communication entity (say, a
socket or a channel) should respect throughout its execution (see Hüttel et al.
[68] for a survey).

Several works have explored the interplay of behavioral types and mecha-
nisms for distributed monitoring. In particular, monitoring frameworks based
on session types, a particular class of behavioral types, have been put forward.
Session types organize a series of communication actions corresponding to the
same reciprocal protocol into a structure called session (see Honda et al. [65]).
While typed process frameworks for binary session types can analyse two-party
protocols, more general type theories for multiparty session types cover the case
of protocols with three or more participants (Honda et al. [66]). Both binary and
multiparty session types start to make their way into mainstream programming
languages and frameworks (Ancona et al. [2]). In the multiparty case, a global
type entirely describes the intended communication scenario. By projecting this



Runtime Verification for Decentralised and Distributed Systems 201

global type onto each protocol participant, one may obtain its corresponding
local type, which abstracts a participant’s contribution to the protocol. This
collection of local types thus offers a key reference for obtaining correct imple-
mentations for all participants.

Communication-centric systems often comprise components made available
as grey- and black-boxes, with limited communication interfaces. As such, static
verification techniques are unsuitable for their validation. Motivated by this
observation, several works develop abstract frameworks based on process calculi
in which monitors are terms of the specification language. The formal semantics
of these calculi uses these monitor terms to enable process behavior according to
the intended protocol. Rather than a logical specification (say, an LTL formula),
each monitor uses a behavioral type (e.g., a local protocol) to guide a partici-
pant’s behavior. These works define a special case of choreographed monitoring:
the coupling of processes and monitors at the same level of abstraction makes
the notion of local trace implicit. Monitors do not communicate to each other,
nor perform autonomous actions. The global type through its projections is used
to synthesize a monitor for each participant. This way, even untyped processes
can be used to implement a protocol participant as long as they offer the right
communication actions at the right time, in accordance with the governing local
protocols.

Based on this general setup, Bocchi et al. [15,16] develop a monitored
π-calculus with dynamic usage of multiparty session types, offering local and
global safety assurance of distributed components. In their model, a network
is a collection of processes (one per participant) that communicate via asyn-
chronous message passing. Each participant is equipped with a trusted monitor
that guards the run-time behavior of both the principal and its environment—
this is realised by the evaluation of incoming and outgoing messages.
Monitors regulate the creation of sessions and movement of messages within
sessions. This dynamic checking can be switched off when processes have been
statically verified. A series of queues shared between principals is assumed to
support message passing, together with a global transport that abstracts dis-
tributed communication.

Building upon Bocchi et al. [15] and Bocchi et al. [16], the works by Hu et al.
[67], Demangeon et al. [41] propose a dynamic verification framework for multi-
party session types that admit interruptions. This a practical framework, which
relies on the Scribble protocol language, an implementation of multiparty session
types (see Yoshida et al. [92]), to specify global protocols, and on a Python API
for conversation programming. In this framework, the monitor that tracks the
progress of each participant within a session is represented using a finite state
machine (FSM), generated from the local type. By independently monitoring
each session endpoint at runtime, this framework ensures global communication
safety even in the presence of asynchronous interruptions.

Other works on a practical strand are [81,82]. Neykova et al. [82] propose
a toolchain for designing deadlock-free multiparty global protocols. Using auto-
matically generated monitors for each session endpoint, this toolchain can detect
illegal communication actions and mistaken message types that go against pro-



202 A. Francalanza et al.

tocol conformance. The work by Neykova et al. [81] extends preceding works
with timed information: Scribble specifications are extended with clocks, resets,
and clock predicates that constrain the occurrence of protocol interactions.

Recent work by Jia et al. [69] introduces a framework for monitoring inter-
acting processes that follow binary session protocols, building upon a logically
motivated theory of session types. As in several of the works mentioned above,
in this framework monitors are placed next to communication endpoints.

A distinguishing aspect is blame assignment: in case processes deviate from
the prescribed session protocols, monitors may halt the execution, raise an alarm,
and assign blame. The authors prove that their dynamic monitoring is not intru-
sive in the sense that it does not change the behavior of well-typed processes.
Also, they show that in case of alarm one of an indicated set of possible culprits
must have been compromised.

Finally, we mention some works in which the concept of monitor as a process
term, in the sense just described, has been exploited. Even though the main pur-
pose of these works is not run-time verification, they can be seen as applications
of choreographed monitoring. Di Giusto and Pérez [42], Di Giusto and Pérez
[43] use this kind of monitors to support the run-time adaptation of session-
typed processes in both binary and multiparty settings. There is exactly one
monitor per session. By combining monitor information and event-based con-
structs, one may specify the reaction to unanticipated circumstances (for exam-
ple, local failures) by means of adaptation steps. An associated type system
ensures communication safety and consistency properties: while safety guaran-
tees absence of run-time communication errors, consistency ensures that adapta-
tion steps do not disrupt already established session protocols. In a similar line,
the monitors defined by Castellani et al. [26,27] play a dual role: they enforce
run-time adaptation policies, and ensure secure information flow in multiparty
exchanges. Recent work by Mezzina and Pérez [75,76] uses monitors as the mem-
ories required to support models of concurrency in which actions are reversible
and causally consistent.

6 Challenges and Conclusion

6.1 Challenges

We list here some challenges for future research in distributed runtime
verification.

Fault Tolerance. One of the key characteristics of distributed systems is that,
in practice, different parts of the system can fail independently. However, most
approaches consider that the system does not fail. Some future problems include
the following.

The theoretical approach by Fraigniaud et al. [53], Bonakdarpour et al. [19]
(discussed in Sect. 5) has two major obstacles to become practical:



Runtime Verification for Decentralised and Distributed Systems 203

– First, after the distributed verdicts are emitted, there is a phase in which a
global function is applied to the collection of verdicts emitted. This function
must be implemented somehow by a central computational infrastructure
which must receive all verdicts and produce an outcome. However, a general
implementation of this function requires a non-failing central monitor. But the
existence of such a central unit would greatly simplify the initial monitoring
problem, and in fact, the basic starting point of [19,53] is to design distributed
fault tolerant solutions.

– Second, the work [19] only presents an algorithm for the processing of a
one letter observation, under the assumption that the processes are perfectly
synchronised at the beginning of such an observation. To process a subse-
quent observation, the monitors that survive the first round must somehow
re-synchronize, but again, a synchronisation procedure would provide a much
simpler solution to the monitoring problem at hand. In summary, A general
fault-tolerant solution for sequences of observations is still an open problem.

Also, there are very few results in runtime verification that can handle net-
work failures (most notably, the work by Basin et al. [8]). It would be very
interesting to extend these approaches to other logics and distributed system
assumptions.

Global Atomic Observations. Specification formalisms for non-distributed
systems assume that atomic predicates are testable, which is not a restriction.
In distributed systems, in general, predicates are global in the sense that they
can involve different parts of the system. Then, not all global predicates are
Boolean combinations of local predicates. For example, one restriction of the
work by Bauer and Falcone [11] is that the individual global observations are
Boolean combinations of local observations performed in each of the processes,
whose observations do not overlap. More formally, each process j can emit a col-
lection of local propositions APj (such that APj ∩APi = ∅ whenever i �= j). The
alphabet of atomic observations is then Σj = 2APj . Note how the global alpha-
bet Σ = 2∪iAPi is strictly larger, in general, than ∪iΣi because it can contain
relational symbols like pi ∨ pj where pi and pj are local observations at different
processes. We use relational observations to refer to atomic propositions whose
truth value depends on the observations made at more than one process. For
example, consider the numeric variables xi and yj where the sub-index indicates
the process at which the variable is observed (Pi and Pj resp). The atomic predi-
cate xi < yj cannot be evaluated at Pi or Pj alone, and it cannot be decomposed
into a Boolean combination of local predicates either.

As discussed earlier, even though research in predicate detection has con-
sidered classes of predicates richer than individual observations (regular, linear,
etc.) and has characterised that detecting a predicate in 2-CNF is already NP-
hard, it would be interesting to extend other techniques for decentralised and
distributed monitoring beyond combinations of local predicates.

Monitor Orchestrations. Colombo and Falcone [34] present a choreographed
decentralised monitoring solution obtained from a network of local monitors,



204 A. Francalanza et al.

which is statically computed by mapping every subformula to a distributed sys-
tem node. There are many possible ways to create such a network, even if one
restricts the map (as in [34]) to one of the nodes with the highest number of
propositions locally involved in the subformula, because there can be more than
one such node. Even though all choices could lead to a correct monitoring solu-
tion, for a given trace of execution, the choice of network has an impact in the
communication overhead. For every input trace, one could calculate a-posteriori
the best network in the sense of the network that would have produced the
lowest overhead. However, even for the fixed parameter assumed in [34] (e.g.,
static number of locations, fixed specifications, no dynamic remote spawning of
new computation, the assumption of a global clock) it is not clear how to pre-
compute an optimal network, even how to approximate it. Nevertheless, there
are alternatives worth investigating. One plausible solution is to exercise the sys-
tem in a test-bed to obtain input traces and compute the optimal network for
the observed set of traces, with the assumption that the traces after deployment
will involve similar communication flows. However, this kind of approach is not
considered in [34].

Adequate solutions to this problem are probably even harder to come up with
when proper distributed system constraints are considered, such as computation
asynchrony, distributed clocks, and the possibility of partial failure. In practi-
cal settings, cases may even arise whereby one has to content with conflicting
criteria. For instance, certain locations may not allow monitor processing and
analysis to be carried out locally, forcing events to be communicated remotely
to the analysing monitor. This, in turn, may conflict with confidentiality and
security concerns.

Monitorability and Correctness. In general, the use of runtime analysis
impinges on the extent to which a correctness property can be verified.

This aspect is often referred to as monitorability. One of the first works that
introduces a notion of monitorability by defining classes of reactive languages
that can be monitored is Viswanathan [91]. Later, D’Angelo et al. [40] defined
monitorability for stream runtime verification on finite traces as the class of
specifications for which efficient monitors can be generated. Pnueli and Zaks
[84] formalised monitorability for LTL as the possibility of a finite trace to be
extended to a finite witness of a specification satisfaction or violation. A similar
notion was presented by Bauer et al. [13] and proved equivalent by Falcone et al.
[48]. This notion was generalised to ω-regular languages by Falcone et al. [47] and
Bauer [10], and later extended by Diekert et al. [44]. The tight complexity of this
notion of monitorability was finally captured in [5]. An alternative definition of
monitorability is given by Francalanza et al. [55] where the fragment of formulas
of a given branching time logic that can be monitored at runtime is captured.

Decentralised and distributed monitoring introduces further restrictions and
raises additional issues that may affect the monitorability of certain correctness
properties. A first solution to decentralised monitorability was given recently



Runtime Verification for Decentralised and Distributed Systems 205

by El-Hokayem and Falcone [45], but further work will be necessary to study its
full applicability and possible extensions.

Concurrent and distributed systems are notoriously hard to get right and
these complications extend also to distributed runtime verification: errors arise
only for particular sequences of events that are hard to simulate using pre-
deployment techniques such as testing, and are also hard to trace and reproduce
for analysis once they occur. It is thus imperative to continue to extend existing
work on developing methods for ascertaining the correctness of the decentralised
and distributed monitoring setups constructed along the lines of [16,49,54].

6.2 Conclusion

In this chapter we have surveyed the literature on runtime verification for dis-
tributed systems. After showing some practical motivations that have justified
the study of monitoring techniques for distributed and decentralised systems,
we identified a series of features that characterize and that allow to classify the
different problems and approaches. These criteria include whether the solution
involves or exploits the description of the system under analysis, whether there
is a single central monitor or the monitoring task is distributed, whether there
is an assumption on a global clock, and whether the system tolerates failures
or perturbs the execution. Finally, we showed a comprehensive list of results
proposed in the literature and listed some challenges for future work.

Acknowledgments. We are grateful to the anonymous reviewers for their useful
remarks and suggestions, which led to significant improvements.

Financial Acknowledgements. This work was partially supported by COST Action
IC1402 (Runtime Verification beyond Monitoring). César Sánchez is funded in part
by Spanish MINECO Project “RISCO (TIN2015-71819-P)” and by EU H2020 project
731535 “Elastest”. Pérez is also affiliated to the NOVA Laboratory for Computer Sci-
ence and Informatics (NOVA LINCS – PEst/UID/CEC/04516/2013), Universidade
Nova de Lisboa, Portugal.

References

1. Alagar, S., Venkatesan, S.: Techniques to tackle state explosion in global predicate
detection. IEEE Trans. Softw. Eng. (TSE) 27(8), 704–714 (2001)

2. Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou, P., Gay,
S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins, F., Mascardi, V.,
Montesi, F., Neykova, R., Ng, N., Padovani, L., Vasconcelos, V.T., Yoshida, N.:
Behavioral types in programming languages. Found. Trends Program. Lang. 3(2–
3), 95–230 (2016)

3. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 473–481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 31

4. Attiya, H., Welch, J.L.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics. Wiley, Hoboken (2004)

https://doi.org/10.1007/978-3-319-46982-9_31


206 A. Francalanza et al.

5. Baader, F., Lippmann, M.: Runtime verification using the temporal description
logic ALC-LTL revisited. J. Appl. Logic 12(4), 584–613 (2014)

6. Bartocci, E.: Sampling-based decentralized monitoring for networked embedded
systems. In: Bortolussi, L., Bujorianu, M.L., Pola, G. (eds.) Proceedings of the 3rd
International Workshop on Hybrid Autonomous Systems (HAS 2013). EPTCS,
vol. 124, pp. 85–99 (2013)

7. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring compliance poli-
cies over incomplete and disagreeing logs. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 151–167. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35632-2 17

8. Basin, D.A., Klaedtke, F., Zalinescu, E.: Failure-aware runtime verification of dis-
tributed systems. In: Proceedings of FSTTCS 2015, pp. 590–603 (2015)

9. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: Proceedings of the 4th IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2006), pp. 3–12. IEEE Computer Society
(2006)

10. Bauer, A.K.: Monitorability of ω-regular languages. arXiv:1006.3638v1 (2010)
11. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,

Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 10

12. Bauer, A.K., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst.
Des. 48(1–2), 49–93 (2016)

13. Bauer, A.K., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20, 14:1–14:64 (2011)

14. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Runtime verification with min-
imal intrusion through parallelism. Formal Methods Syst. Des. 46(3), 317–348
(2015)

15. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. In: Proceedings of FMOODS/FORTE 2013, pp.
50–65 (2013)

16. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

17. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated
conflict-free distributed implementation of component-based models. In: Proceed-
ings of the IEEE 5th International Symposium on Industrial Embedded Systems
(SIES 2010), pp. 108–117. IEEE (2010)

18. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-
level component-based models to distributed implementations. In: Proceedings of
EMSOFT 2010, pp. 209–218. ACM (2010)

19. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Rosenblueth, D., Travers, C.:
Decentralised asynchronous crash-resilient runtime verification. In: Proceedings
of the 27th International Conference on Concurrency Theory (CONCUR 2016).
LIPIcs, vol. 59, pp. 16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

20. Bonakdarpour, B., Fraigniaud, P., Rajsbaum, S., Travers, C.: Challenges in fault-
tolerant distributed runtime verification. In: Margaria, T., Steffen, B. (eds.) ISoLA
2016, Part II. LNCS, vol. 9953, pp. 363–370. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47169-3 27

21. Carbone, M. (ed.): Proceedings of the Third Workshop on Behavioural Types
(BEAT 2014). EPTCS, vol. 162 (2014)

https://doi.org/10.1007/978-3-642-35632-2_17
https://doi.org/10.1007/978-3-642-35632-2_17
http://arxiv.org/abs/1006.3638v1
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-319-47169-3_27
https://doi.org/10.1007/978-3-319-47169-3_27


Runtime Verification for Decentralised and Distributed Systems 207

22. Cassar, I., Francalanza, A.: On synchronous and asynchronous monitor instrumen-
tation for actor systems. In: Proceedings of FOCLASA 2014, vol. 175, pp. 54–68
(2014)

23. Cassar, I., Francalanza, A.: Runtime adaptation for actor systems. In: Bartocci,
E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 38–54. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23820-3 3

24. Cassar, I., Francalanza, A.: On implementing a monitor-oriented programming
framework for actor systems. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016.
LNCS, vol. 9681, pp. 176–192. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33693-0 12

25. Cassar, I., Francalanza, A., Said, S.: Improving runtime overheads for detector.
In: Buhnova, B., Happe, L., Kofron, J. (eds.) Proceedings of the 12th Interna-
tional Workshop on Formal Engineering approaches to Software Components and
Architectures (FESCA 2015). EPTCS, vol. 178, pp. 1–8 (2015)

26. Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and secure infor-
mation flow in multiparty structured communications: a unified perspective. In:
[21], pp. 9–18

27. Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and secure infor-
mation flow in multiparty communications. Formal Asp. Comput. 28(4), 669–696
(2016)

28. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

29. Chase, C.M., Garg, V.K.: Detection of global predicates: techniques and their
limitations. Distrib. Comput. 11(4), 191–201 (1998)

30. Chauhan, H., Garg, V.K., Natarajan, A., Mittal, N.: A distributed abstraction
algorithm for online predicate detection. In: IEEE 32nd Symposium on Reliable
Distributed Systems (SRDS 2013), pp. 101–110. IEEE Computer Society (2013)

31. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00768-2 23

32. Colombo, C., Dimech, G., Francalanza, A.: Investigating instrumentation tech-
niques for ESB runtime verification. In: Calinescu, R., Rumpe, B. (eds.) SEFM
2015. LNCS, vol. 9276, pp. 99–107. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22969-0 7

33. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 140–155. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 12

34. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods Syst. Des. 49(1–2), 109–158 (2016)

35. Colombo, C., Francalanza, A., Gatt, R.: Elarva: a monitoring tool for Erlang. In:
Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 370–374. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8 29

36. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polyLarva: runtime verifi-
cation with configurable resource-aware monitoring boundaries. In: Eleftherakis,
G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 218–232.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33826-7 15

37. Cooper, R., Marzullo, K.: Consistent detection of global predicates. In: Proceedings
of the ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 163–173
(1991)

https://doi.org/10.1007/978-3-319-23820-3_3
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-319-33693-0_12
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-319-22969-0_7
https://doi.org/10.1007/978-3-319-22969-0_7
https://doi.org/10.1007/978-3-319-11164-3_12
https://doi.org/10.1007/978-3-319-11164-3_12
https://doi.org/10.1007/978-3-642-29860-8_29
https://doi.org/10.1007/978-3-642-33826-7_15


208 A. Francalanza et al.

38. Coulouris, G.: Distributed Systems: Concepts and Design. Addison-Wesley, Boston
(2011)

39. Cristian, F., Fetzer, C.: The timed asynchronous distributed system model. IEEE
Trans. Parallel Distrib. Syst. 10(6), 642–657 (1999)

40. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: Proceedings of the 12th International Symposium of Temporal Rep-
resentation and Reasoning (TIME 2005), pp. 166–174. IEEE CS Press (2005)

41. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and python. Formal Methods Syst. Des. 46(3), 197–225 (2015)

42. Di Giusto, C., Pérez, J.A.: An event-based approach to runtime adaptation in
communication-centric systems. In: Hildebrandt, T., Ravara, A., van der Werf,
J.M., Weidlich, M. (eds.) WS-FM 2014-2015. LNCS, vol. 9421, pp. 67–85. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33612-1 5

43. Di Giusto, C., Pérez, J.A.: Event-based run-time adaptation in communication-
centric systems. Formal Aspects Comput. 28(4), 1–36 (2016)

44. Diekert, V., Muscholl, A., Walukiewicz, I.: A note on monitors and Büchi automata.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399,
pp. 39–57. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 3

45. El-Hokayem, A., Falcone, Y.: Monitoring decentralized specifications. In: Proceed-
ings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2017), pp. 125–135. ACM (2017)

46. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized
monitoring of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 66–83. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43613-4 5

47. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0 4

48. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? STTT 14(3), 349–382 (2012)

49. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.: Runtime verifi-
cation of component-based systems in the BIP framework with formally-proved
sound and complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2015)

50. Felser, M.: Real-time Ethernet - industry prospective. Proc. IEEE 93(6), 1118–
1129 (2005)

51. Fidge, C.: Timestamps in message-passing systems that preserve the partial order-
ing. In: Proceedings of the 11th Australian Computer Science Conference, pp.
55–66 (1989)

52. Fidge, C.: Logical time in distributed computer systems. Computer 24(8), 28–33
(1991)

53. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In: RV (2014)

54. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 9

55. Francalanza, A., Aceto, L., Ingolfsdottir, A.: Monitorability for the Hennessy-
Milner logic with recursion. FMSD 51(1), 1–30 (2017)

https://doi.org/10.1007/978-3-319-33612-1_5
https://doi.org/10.1007/978-3-319-25150-9_3
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9


Runtime Verification for Decentralised and Distributed Systems 209

56. Francalanza, A., Gauci, A., Pace, G.J.: Distributed system contract monitoring.
In: Pimentel, E., Valero, V. (eds.) Proceedings of the Fifth Workshop on Formal
Languages and Analysis of Contract-Oriented Software, FLACOS 2011, Málaga,
Spain, 22–23 September 2011. EPTCS, vol. 68, pp. 23–37 (2011)

57. Francalanza, A., Gauci, A., Pace, G.J.: Distributed system contract monitoring. J.
Logic Algebraic Program. 82(5–7), 186–215 (2013)

58. Francalanza, A., Hennessy, M.: A theory of system behaviour in the presence of
node and link failure. Inf. Comput. 206(6), 711–759 (2008)

59. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 112–129. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 7

60. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
FMSD 46(3), 226–261 (2015)

61. Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: theory, imple-
mentation and applications. In: Proceedings of CCS 2011, pp. 151–162 (2011)

62. Garg, V.K.: Elements of Distributed Computing. Wiley-IEEE Press, New York
(2002)

63. Garg, V.K., Mittal, N.: On slicing a distributed computation. In: Proceedings of the
21st IEEE International Conference on Distributed Computing Systems (ICDCS
2001), pp. 322–329. IEEE CS Press (2001)

64. Garg, V.K., Waldecker, B.: Detection of weak unstable predicates in distributed
programs. IEEE Trans. Parallel Distrib. Syst. 5(3), 299–307 (1994)

65. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

66. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016)

67. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations - distributed dynamic verification with session types and python.
In: [72], pp. 130–148

68. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3:1–3:36 (2016)

69. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-
order session types. In: Bod́ık, R., Majumdar, R. (eds.) Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, 20–22 January 2016, pp. 582–594.
ACM (2016)

70. Joyce, J., Lomow, G., Slind, K., Unger, B.W.: Monitoring distributed systems.
ACM Trans. Comput. Syst. 5(2), 121–150 (1987)

71. Lamport, L.: Time, clocks and the ordering of events in distributed systems. Com-
mun. ACM 21(7), 558–565 (1978)

72. Legay, A., Bensalem, S. (eds.): RV 2013. LNCS, vol. 8174. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40787-1

73. Luo, Q., Roşu, G.: EnforceMOP: a runtime property enforcement system for mul-
tithreaded programs. In: ISSTA. ACM, New York (2013)

74. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the Workshop on Parallel and Distributed Algorithms, pp. 215–226. Elsevier
(1989)

https://doi.org/10.1007/978-3-642-40787-1_7
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-642-40787-1


210 A. Francalanza et al.

75. Mezzina, C.A., Pérez, J.A.: Reversible sessions using monitors. In: Orchard, D.A.,
Yoshida, N. (eds.) Proceedings of the Ninth Workshop on Programming Language
Approaches to Concurrency- and Communication-cEntric Software (PLACES
2016). EPTCS, vol. 211, pp. 56–64 (2016)

76. Mezzina, C.A., Pérez, J.A.: Reversibility in session-based concurrency: a fresh look.
J. Log. Algebraic Methods Program. 90, 2–30 (2017)

77. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

78. Mittal, N., Garg, V.K.: Techniques and applications of computation slicing. Distrib.
Comput. 17(3), 251–277 (2005)

79. Mittal, N., Sen, A., Garg, V.K.: Solving computation slicing using predicate detec-
tion. IEEE Trans. Parallel Distrib. Systems (TPDS) 18(12), 1700–1713 (2007)

80. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: Proceedings of the 2015 IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2015), pp. 494–503. IEEE
Computer Society (2015)

81. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. In: [21], pp. 19–26

82. Neykova, R., Yoshida, N., Hu, R.: SPY: local verification of global protocols. In:
[72], pp. 358–363

83. Ogale, V.A., Garg, V.K.: Detecting temporal logic predicates on distributed com-
putations. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 420–434. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75142-7 32

84. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

85. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12(2), 151–197 (2005)

86. Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs
using computation slicing. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003.
LNCS, vol. 3144, pp. 171–183. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27860-3 17

87. Sen, A., Garg, V.K.: Partial order trace analyzer (POTA) for distributed programs.
ENTCS 89(2), 22–43 (2003). Proceedings of Workshop on Runtime Verification
(RV 2003)

88. Sen, A., Garg, V.K.: Formal verification of simulation traces using computation
slicing. IEEE Trans. Comput. 56, 511–527 (2007)

89. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings of ICSE 2004. IEEE CS Press (2004)

90. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Decentralized runtime analysis of mul-
tithreaded applications. In: Proceedings of the 20th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2006). IEEE (2006)

91. Viswanathan, M.: Foundations for the run-time analysis of software systems. Ph.D.
thesis, University of Pennsylvania (2000)

92. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05119-2 3

93. Zhang, T., Gebhard, P., Sokolsky, O.: SMEDL: combining synchronous and asyn-
chronous monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol.
10012, pp. 482–490. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 32

https://doi.org/10.1007/978-3-540-75142-7_32
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/978-3-540-27860-3_17
https://doi.org/10.1007/978-3-540-27860-3_17
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-46982-9_32
https://doi.org/10.1007/978-3-319-46982-9_32

	Runtime Verification for Decentralised and Distributed Systems
	1 Introduction
	2 Motivation and Scenarios
	3 Characteristics of Distributed Runtime Verification
	3.1 Common Characteristics
	3.2 Distinguishing Characteristics

	4 Monitor Organisations
	4.1 Traditional Monitoring
	4.2 Decentralised Monitoring
	4.3 Orchestrated Monitoring
	4.4 Choreographed Monitoring

	5 Instantiations
	6 Challenges and Conclusion
	6.1 Challenges
	6.2 Conclusion

	References




