Skip to main content

Privacy-Preserving Equality Test Towards Big Data

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2017)

Abstract

In this paper, we review the problem of private batch equality test (PriBET) that was proposed by Saha and Koshiba (3rd APWConCSE 2016). They described this problem to find the equality of an integer within a set of integers between two parties who do not want to reveal their information if they do not equal. For this purpose, they proposed the PriBET protocol along with a packing method using the binary encoding of data. Their protocol was secured by using ring-LWE based somewhat homomorphic encryption (SwHE) in the semi-honest model. But this protocol is not fast enough to address the big data problem in some practical applications. To solve this problem, we propose a base-N fixed length encoding based PriBET protocol using SwHE in the same semi-honest model. Here we did our experiments for finding the equalities of 8–64-bit integers. Furthermore, our experiments show that our protocol is able to evaluate more than one million (resp. 862 thousand) of equality comparisons per minute for 8-bit (resp. 16-bit) integers with an encoding size of base 256 (resp. 65536). Besides, our protocol works more than 8–20 in magnitude than that of Saha and Koshiba.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  2. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  3. Couteau, G.: Efficient secure comparison protocols, Cryptology ePrint Archive, Report 2016/544 (2016). http://eprint.iacr.org/2016/544

  4. Gentry, C.: Fully homomorphic encryption using Ideal lattices. In: Symposium on Theory of Computing - STOC 2009, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  5. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? ACM Workshop on Cloud Computing Security Workshop. CCSW 2011, pp. 113–124. ACM, New York (2011)

    Google Scholar 

  6. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Google Scholar 

  8. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

    Chapter  Google Scholar 

  9. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphism. In: DeMillo, R.A., Dobkin, D.P., Jones, A.K., Lipton, R.J. (eds.) Foundations of Secure Computation, pp. 169–177. Academic Press, New York (1978)

    Google Scholar 

  10. Saha, T.K., Koshiba, T.: An enhancement of privacy-preserving wildcards pattern matching. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 145–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51966-1-10

    Chapter  Google Scholar 

  11. Saha, T.K., Koshiba, T.: Private equality test using ring-LWE somewhat homomorphic encryption. In: 3rd Asia Pacific World Congress on Computer Science and Engineering (APWConCSE), pp. 1–9. IEEE (2016)

    Google Scholar 

  12. Saha, T.K., Mayank, Koshiba, T.: Efficient protocols for private database queries. In: Livraga, G., Zhu, S. (eds.) DBSec 2017. LNCS, vol. 10359, pp. 337–348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61176-1_19

    Chapter  Google Scholar 

  13. The PARI\(\sim \)Group: PARI/GP version 2.7.5, Bordeaux (2014). http://pari.math.u-bordeaux.fr/

  14. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practical packing method in somewhat homomorphic encryption. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) DPM/SETOP 2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54568-9_3

    Chapter  Google Scholar 

  15. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pattern matching using somewhat homomorphic encryption. In: Proceedings of the 2013 ACM workshop on Cloud computing security workshop, pp. 65–76. ACM (2013)

    Google Scholar 

  16. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure statistical analysis using RLWE-based homomorphic encryption. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, pp. 471–487. Springer, Springer (2015). https://doi.org/10.1007/978-3-319-19962-7_27

    Chapter  Google Scholar 

  17. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE (1982)

    Google Scholar 

  18. Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private information retrieval from fully homomorphic encryption. IEEE Trans. Knowl. Data Eng. 25(5), 1125–1134 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by JSPS Grant-in-Aids for Scientific Research (A) JP16H01705 and for Scientific Research (B) JP17H01695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, T.K., Koshiba, T. (2018). Privacy-Preserving Equality Test Towards Big Data. In: Imine, A., Fernandez, J., Marion, JY., Logrippo, L., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2017. Lecture Notes in Computer Science(), vol 10723. Springer, Cham. https://doi.org/10.1007/978-3-319-75650-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75650-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75649-3

  • Online ISBN: 978-3-319-75650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics