Skip to main content

Deep Preference Neural Network for Move Prediction in Board Games

  • Conference paper
  • First Online:
Computer Games (CGW 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 818))

Included in the following conference series:

  • 666 Accesses

Abstract

The training of deep neural networks for move prediction in board games using comparison training is studied. Specifically, the aim is to predict moves for the game Othello from championship tournament game data. A general deep preference neural network will be presented based on a twenty year old model by Tesauro. The problem of over-fitting becomes an immediate concern when training the deep preference neural networks. It will be shown how dropout may combat this problem to a certain extent. How classification test accuracy does not necessarily correspond to move accuracy is illustrated and the key difference between preference training versus single-label classification is discussed. The careful use of dropout coupled with richer game data produces an evaluation function that is a better move predictor but will not necessarily produce a stronger game player.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.ffothello.org.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Binkley, K.J., Seehart, K., Hagiwara, M.: A study of artificial neural network architectures for Othello evaluation functions. Inf. Media Technol. 2(4), 1129–1139 (2007)

    Google Scholar 

  3. Buro, M.: Logistello: a strong learning Othello program. In: 19th Annual Conference Gesellschaft für Klassifikation eV, vol. 2 (1995)

    Google Scholar 

  4. Burrow, P.: Hybridising evolution and temporal difference learning. Ph.D. thesis, University of Essex, UK (2011)

    Google Scholar 

  5. Foullon-Perez, A., Lucas, S.M.: Orientational features with the SNT-grid. In: 2009 International Joint Conference on Neural Networks, pp. 877–881 (2009)

    Google Scholar 

  6. Fürnkranz, J., Hüllermeier, E.: Preference learning: an introduction. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 1–17. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6_1

    Google Scholar 

  7. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Lagoudakis, M., Parr, R.: Reinforcement learning as classification: leveraging modern classifiers. In: ICML, vol. 20, pp. 424–431 (2003)

    Google Scholar 

  9. Lazaric, A., Ghavamzadeh, M., Munos, R.: Analysis of a classification-based policy iteration algorithm. In: Proceedings of the 27th International Conference on Machine Learning, pp. 607–614 (2010)

    Google Scholar 

  10. Li, L., Bulitko, V., Greiner, R.: Focus of attention in reinforcement learning. J. Univ. Comput. Sci. 13(9), 1246–1269 (2007)

    Google Scholar 

  11. Rigutini, L., Papini, T., Maggini, M., Scarselli, F.: Sortnet: learning to rank by a neural preference function. IEEE Trans. Neural Netw. 22(9), 1368–1380 (2011)

    Article  Google Scholar 

  12. Rimmel, A., Teytaud, O., Lee, C.S., Yen, S.J., Wang, M.H., Tsai, S.R.: Current frontiers in computer Go. IEEE Trans. Comput. Intell. AI Games 2(4), 229–238 (2010)

    Article  Google Scholar 

  13. Runarsson, T.P., Lucas, S.M.: Preference learning for move prediction and evaluation function approximation in Othello. IEEE Trans. Comput. Intell. AI Games 6(3), 300–313 (2014)

    Article  Google Scholar 

  14. Runarsson, T., Lucas, S.: Imitating play from game trajectories: temporal difference learning versus preference learning. In: IEEE Conference on Computational Intelligence and Games, pp. 79–82 (2012)

    Google Scholar 

  15. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  16. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Tesauro, G.: Practical issues in temporal difference learning. Mach. Learn. 8, 257–277 (1992)

    MATH  Google Scholar 

  18. Tesauro, G.: Connectionist learning of expert preferences by comparison training. In: NIPS, vol. 1, pp. 99–106 (1988)

    Google Scholar 

  19. Tesauro, G.: Neurogammon wins computer olympiad. Neural Comput. 1(3), 321–323 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Philip Runarsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Runarsson, T.P. (2018). Deep Preference Neural Network for Move Prediction in Board Games. In: Cazenave, T., Winands, M., Saffidine, A. (eds) Computer Games. CGW 2017. Communications in Computer and Information Science, vol 818. Springer, Cham. https://doi.org/10.1007/978-3-319-75931-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75931-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75930-2

  • Online ISBN: 978-3-319-75931-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics