Abstract
The training of deep neural networks for move prediction in board games using comparison training is studied. Specifically, the aim is to predict moves for the game Othello from championship tournament game data. A general deep preference neural network will be presented based on a twenty year old model by Tesauro. The problem of over-fitting becomes an immediate concern when training the deep preference neural networks. It will be shown how dropout may combat this problem to a certain extent. How classification test accuracy does not necessarily correspond to move accuracy is illustrated and the key difference between preference training versus single-label classification is discussed. The careful use of dropout coupled with richer game data produces an evaluation function that is a better move predictor but will not necessarily produce a stronger game player.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
Binkley, K.J., Seehart, K., Hagiwara, M.: A study of artificial neural network architectures for Othello evaluation functions. Inf. Media Technol. 2(4), 1129–1139 (2007)
Buro, M.: Logistello: a strong learning Othello program. In: 19th Annual Conference Gesellschaft für Klassifikation eV, vol. 2 (1995)
Burrow, P.: Hybridising evolution and temporal difference learning. Ph.D. thesis, University of Essex, UK (2011)
Foullon-Perez, A., Lucas, S.M.: Orientational features with the SNT-grid. In: 2009 International Joint Conference on Neural Networks, pp. 877–881 (2009)
Fürnkranz, J., Hüllermeier, E.: Preference learning: an introduction. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 1–17. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6_1
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lagoudakis, M., Parr, R.: Reinforcement learning as classification: leveraging modern classifiers. In: ICML, vol. 20, pp. 424–431 (2003)
Lazaric, A., Ghavamzadeh, M., Munos, R.: Analysis of a classification-based policy iteration algorithm. In: Proceedings of the 27th International Conference on Machine Learning, pp. 607–614 (2010)
Li, L., Bulitko, V., Greiner, R.: Focus of attention in reinforcement learning. J. Univ. Comput. Sci. 13(9), 1246–1269 (2007)
Rigutini, L., Papini, T., Maggini, M., Scarselli, F.: Sortnet: learning to rank by a neural preference function. IEEE Trans. Neural Netw. 22(9), 1368–1380 (2011)
Rimmel, A., Teytaud, O., Lee, C.S., Yen, S.J., Wang, M.H., Tsai, S.R.: Current frontiers in computer Go. IEEE Trans. Comput. Intell. AI Games 2(4), 229–238 (2010)
Runarsson, T.P., Lucas, S.M.: Preference learning for move prediction and evaluation function approximation in Othello. IEEE Trans. Comput. Intell. AI Games 6(3), 300–313 (2014)
Runarsson, T., Lucas, S.: Imitating play from game trajectories: temporal difference learning versus preference learning. In: IEEE Conference on Computational Intelligence and Games, pp. 79–82 (2012)
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Tesauro, G.: Practical issues in temporal difference learning. Mach. Learn. 8, 257–277 (1992)
Tesauro, G.: Connectionist learning of expert preferences by comparison training. In: NIPS, vol. 1, pp. 99–106 (1988)
Tesauro, G.: Neurogammon wins computer olympiad. Neural Comput. 1(3), 321–323 (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Runarsson, T.P. (2018). Deep Preference Neural Network for Move Prediction in Board Games. In: Cazenave, T., Winands, M., Saffidine, A. (eds) Computer Games. CGW 2017. Communications in Computer and Information Science, vol 818. Springer, Cham. https://doi.org/10.1007/978-3-319-75931-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-75931-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75930-2
Online ISBN: 978-3-319-75931-9
eBook Packages: Computer ScienceComputer Science (R0)