Skip to main content

Design of Millimeter-Wave Microstrip Antenna Array for 5G Communications – A Comparative Study

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 736))

Abstract

Millimeter wave communication is found as a suitable technology for future 5G communications. The beamforming antenna is chosen to increase the link capacity considering the atmospheric losses at millimeter wave frequencies. This work compares the performance of different microstrip antenna arrays in terms of the return loss bandwidth, gain, half power beamwidth, side lobe level etc. The results are simulated using commercial electromagnetic software. A suitable array structure is suggested from the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FCC Document: Revision of part 15 of the commission’s rules. In: ET docket No. 07-113 regarding operation in the 57–64 GHz band, RM- 11104-report and order, 9 August 2013

    Google Scholar 

  2. Kutty, S., Sen, D.: Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tutor. 18(2), 949–973 (2016)

    Article  Google Scholar 

  3. Kawakubo, A., Tokoro, S., Yamada, Y. et al.: Electronically scanning millimeter wave radar for forward objects detection. Soc. Automotive Eng., Warrendale, PA, SAE Technical Paper 2004-01-1122 (2004)

    Google Scholar 

  4. Singh, H., Jisung, O., et al.: A 60 GHz wireless network for enabling uncompressed video communication. IEEE Commun. Mag. 46(12), 71–78 (2008)

    Article  Google Scholar 

  5. Gilbert, J.M., Doan, C.H., et al.: A 4-Gbps uncompressed wireless HD A/V transceiver chipset. IEEE Micro 28(2), 56–64 (2008)

    Article  Google Scholar 

  6. Schwering, F.K.: Millimeter wave antennas. Proc. IEEE 80(1), 92–102 (1992)

    Article  Google Scholar 

  7. Albert, S.: Applications of MM wave microstrip antenna arrays. In: Proceedings on International Symposium on Signals, Systems and Electronics, ISSSE 2007, pp. 109–122. IEEE, Montreal (2007)

    Google Scholar 

  8. Schwering, F.K., Oliner, A.A.: Millimeter wave antennas. In: Lo, Y.T., Lee, S.W. (eds.) Antenna Handbook. Springer Science+Business Media, New York (1988)

    Google Scholar 

  9. Weiss, M.A.: Microstrip antennas for millimeter waves. IEEE Trans. Antennas Propag. 29(1), 171–174 (1981)

    Article  MathSciNet  Google Scholar 

  10. Pitra, K., Raida, Z.: Planar millimeter-wave antennas: a comparative study. Radioengineering 20(1), 263–269 (2011)

    Google Scholar 

  11. Briqech, Z., Sebak, A.: Low cost 60 GHz printed yagi antenna array. In: IEEE International Symposium on Antennas and Propagation Society (APSURSI), Chicago, USA (2012)

    Google Scholar 

  12. Iizuka, H., Watanabe, T., et al.: Millimeter-wave microstrip array antenna for automotive radar. IEICE Trans. Commun. E86-B(9), 2728–2738 (2003)

    Google Scholar 

  13. Alavi, S. E., Soltanian, M. R. K. et al.: Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fraunthaul. Sci. Rep. 6, 19891 (2016). Nature Publishing Group

    Google Scholar 

  14. Hayashi, Y., Sakakibara, K., et al.: Millimeter-wave microstrip comb-line antenna using reflection-canceling slit structure. IEEE Trans. Antennas Propag. 59(2), 398–406 (2011)

    Article  Google Scholar 

  15. Sakakibara, K., Sugawa, S. et al.: Millimeter-wave microstrip array antenna with matching-circuit-integrated radiating-elements for travelling-wave excitation. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE, Barcelona (2010)

    Google Scholar 

  16. Sakakibara, K., Hayashi, Y. et al.: Two-dimensional array design techniques of millimeter-wave microstrip comb-line antenna array. Radio Sci. 43(RS4S25) (2008). https://doi.org/10.1029/2007rs003801

  17. Tamijani, A.A., Sarabandi, K.: An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays. IEEE Trans. Antennas Propag. 51(9), 2193–2202 (2003)

    Article  Google Scholar 

  18. Mingjian, L., Luk, K.M.: Low-cost wideband microstrip antenna array for 60-GHz applications. IEEE Trans. Antennas Propag. 62(6), 3012–3018 (2014)

    Article  Google Scholar 

  19. Rida, A., Tentzeris, M. et al.: Design of low cost microstrip antenna arrays for mm-wave applications. In: IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, pp. 2071–2073 (2011)

    Google Scholar 

  20. Hu, C.N., Chang, D.C. et al.: Millimeter-wave microstrip antenna array design and an adaptive algorithm for future 5G wireless communication systems. Int. J. Antennas Propag. Hindawi Publ. Corp., 1–10 (2016). Article ID 7202143

    Google Scholar 

  21. Alam, M.S., Islam, M.T., et al.: A wideband microstrip patch antenna for 60 GHz wireless applications. Elektron. Elektrotech. 19(9), 65–70 (2013)

    Google Scholar 

  22. Zhang, J., Qiang, X., et al.: 5G millimeter-wave antenna array: design and challenges. IEEE Wirel. Commun. 24(2), 106–112 (2017)

    Article  Google Scholar 

  23. Balanis, C.A.: Antenna Theory – Analysis and Design, 3rd edn. Wiley, Hoboken (2005)

    Google Scholar 

  24. Ghalibafan, J., Attari, A.R., Kashani, F.H.: A new dual-band microstrip antenna with U-shaped slot. Prog. Electromagn. Res. C 12, 215–223 (2010)

    Article  Google Scholar 

  25. Xu, J., Wang, W.: A low cost elliptical dipole antenna array for 60 GHz applications. In: PIERS Proceedings, Taipei, pp. 1044–1047 (2013)

    Google Scholar 

  26. Wu, D., Tong, Z. et al.: A 76.5 GHz microstrip comb-line antenna array for automotive radar system. In: Proceedings of the Ninth European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE, Lisbon (2015)

    Google Scholar 

  27. Sengupta, S., Jackson, D.R., et al.: A method for analyzing a linear series-fed rectangular microstrip antenna array. IEEE Trans. Antennas Propag. 63(8), 3731–3736 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rakesh, R.T., Chowdhary, A. et al.: A scalable subband subsampled radio architecture for millimeter wave communications. In: Proceedings of the 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Fundamentals and PHY. pp. 309–314. IEEE, Montreal (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saswati Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, S., Sen, D. (2018). Design of Millimeter-Wave Microstrip Antenna Array for 5G Communications – A Comparative Study. In: Abraham, A., Muhuri, P., Muda, A., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2017. Advances in Intelligent Systems and Computing, vol 736. Springer, Cham. https://doi.org/10.1007/978-3-319-76348-4_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76348-4_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76347-7

  • Online ISBN: 978-3-319-76348-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics