Skip to main content

Evolving Memristive Neural Networks

  • Chapter
  • First Online:
Handbook of Memristor Networks

Abstract

Of the many network representations in which memristors can be modelled, neural networks are perhaps the most enticing as they open the possibility for neuromorphic computing—biologically-inspired brainlike information processing in hardware. Memristors are analogous to biological synapses; both feature nonvolatile resistance, a charge-dependent plastic response to activity, and can provide adaptive learning when coupled with a Hebbian mechanism. In this chapter, various types of memristors are deployed as synapses in spiking networks. Biological information processing implies autonomous learning control—a neuro-evolutionary approach provides this functionality and is used to search for beneficial network topologies. The main focus of this work extends the remit of the evolutionary algorithm to alter the conductance profiles of individual memristors, creating networks of heterogeneous variable synapses. These variable memristor networks are tested against networks of benchmark synapses in a robotic pathfinding scenario. Experimental findings conclude that the variable synapses bestow more behavioural degrees of freedom to the networks, allowing them to outperform the comparative synapse types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, L., Regehr, W.: Synaptic computation. Nature 431, 796–803 (2004)

    Article  Google Scholar 

  2. Afifi, A., Ayatollahi, A., Raissi, F.: Stdp implementation using memristive nanodevice in cmos-nano neuromorphic networks. IEICE Electron. Express 6(3), 148–153 (2009)

    Article  Google Scholar 

  3. Akinaga, B.H., Shima, H.: Resistive random access memory (reram) based on metal oxides. Proc. IEEE 98(12), 2237–2251 (2010)

    Article  Google Scholar 

  4. Chua, L.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  5. Chua, L., Sbitnev, V., Kim, H.: Hodgkin huxley axon is made of memristors. Int. J. Bifurcat. Chaos 22(03), 1230,011 (2012)

    Article  Google Scholar 

  6. Dolan, C.P., Dyer, M.G.: Toward the evolution of symbols. In: Grefenstette, J.J. (ed.) Genetic Algorithms and their Applications (ICGA’87), pp. 123–131. Lawrence Erlbaum Associates, Hillsdale, New Jersey (1987)

    Google Scholar 

  7. Doolittle, W., Calley, W., Henderson, W.: Complementary oxide memristor technology facilitating both inhibitory and excitatory synapses for potential neuromorphic computing applications. In: Semiconductor Device Research Symposium, 2009. ISDRS ’09. International, pp. 1–2 (2009)

    Google Scholar 

  8. Durr, P., Mattiussi, C., Soltoggio, A., Floreano, D.: Evolvability of neuromodulated learning for robots. In: Proceedings of the 2008 ECSIS Symposium on Learning and Adaptive Behavior in Robotic Systems, pp. 41–46. IEEE Computer Society, Los Alamitos, CA (2008)

    Google Scholar 

  9. Erokhin, V.: On the learning of stochastic networks of organic memristive devices. IJUC 9(3–4), 303–310 (2013)

    Google Scholar 

  10. Erokhin, V., Fontana, M.P.: Electrochemically controlled polymeric device: a memristor (and more) found two years ago (2008). ArXiv e-prints 0807.0333

  11. Erokhin, V., Howard, G.D., Adamatzky, A.: Organic memristor devices for logic elements with memory. Int. J. Bifurcat. Chaos 22(11), 1250283 (2012)

    Article  MathSciNet  Google Scholar 

  12. Floreano, D., Durr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1, 47–62 (2008)

    Article  Google Scholar 

  13. Gale, E.: The memory-conservation model of memristance. In: Heber, J., Schlom, D., Tokura, Y., Waser, R., Wutting, M. (eds.) Technical Digest of Frontiers in Electronic Materials, pp. 538–539. Nature Conferences & Wiley VCH (2012)

    Google Scholar 

  14. Gale, E., de Lacy Costello, B., Adamatzky, A.: The effect of electrode size on memristor properties: an experimental and theoretical study. In: International Conference in Electronics Design, Systems and Applications (ICEDSA 2012) (2012)

    Google Scholar 

  15. Gerstner, W., Kistler, W.: Spiking Neuron Models—Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  16. Hebb, D.O.: The Organisation of Behavior. Wiley, New York (1949)

    Google Scholar 

  17. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  18. Hosoi, Y., Tamai, Y., Ohnishi, T., Ishihara, K., Shibuya, T., Inoue, Y., Yamazaki, S., Nakano, T., Ohnishi, S., Awaya, N., et al.: High speed unipolar switching resistance ram (rram) technology. In: 2006 International Electron Devices Meeting, vol. 1, pp. 1–4 (2006)

    Google Scholar 

  19. Howard, G., Gale, E., Bull, L., de Lacy, Costello B., Adamatzky, A.: Evolution of plastic learning in spiking networks via memristive connections. IEEE Trans. Evol. Comput. 16(5), 711–729 (2012a)

    Article  Google Scholar 

  20. Howard, G.D.: Constructivist and spiking neural learning classifier systems. Ph.D. thesis, University of the West of England (2010)

    Google Scholar 

  21. Howard, G.D., Bull, L., Adamatzky, A.: Cartesian genetic programming for memristive logic circuits. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) Proceedings of the 15th European Conference on Genetic Programming, EuroGP 2012. LNCS, vol. 7244, pp. 37–48. Springer, Malaga, Spain (2012b)

    Google Scholar 

  22. Howard, G.D., Bull, L., Costello, B.D.L., Adamatzky, A., Erokhin, V.: Creating unorganised machines from memristors. Int. J. Appl. Math. Inf. Sci. 7(4), 1275–1283 (2013)

    Article  Google Scholar 

  23. Howard, G.D., Bull, L., Costello, B.D.L., Gale, E., Adamatzky, A.: Evolving spiking networks with variable resistive memories. Evol. Comput. 22(1), 79–103, MIT Press, Cambridge, MA, USA (2014)

    Google Scholar 

  24. Hurst, J., Bull, L.: A neural learning classifier system with self-adaptive constructivism for mobile robot control. Artif. Life 12(3), 353–380 (2006)

    Article  Google Scholar 

  25. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  26. Kistler, W.M.: Spike-timing dependent synaptic plasticity: a phenomenological framework. Biol. Cybern. 87(5–6), 416–427 (2002)

    Article  Google Scholar 

  27. Linares-Barranco, B., Serrano-Gotarredona, T.: Memristance can explain spike-time-dependent-plasticity in neural synapses. In: Nature Precedings (2009)

    Google Scholar 

  28. Liu, S., Wu, N., Ignatiev, A.: Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76(19), 2749–2751 (2000)

    Article  Google Scholar 

  29. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1996)

    Article  Google Scholar 

  30. Maass, W., Zador, A.M.: Dynamic stochastic synapses as computational units. Neural Comput. 11(4), 903–917 (1999)

    Article  Google Scholar 

  31. Mead, C.: Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  32. Michel, O.: Webots\(^{TM}\): professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1(1), 39–42 (2004)

    Google Scholar 

  33. Mouttet, B.: Memristor pattern recognition circuit architecture for robotics. In: Proceedings of the 2nd International Multi-Conference on Engineering and Technological Innovation II, pp. 65–70 (2009)

    Google Scholar 

  34. Nolfi, S., Floriano, D.: Evolutionary Robotics. The MIT Press, Cambridge, MA (2000)

    Google Scholar 

  35. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 021,926 (2009). https://doi.org/10.1103/PhysRevE.80.021926

    Article  Google Scholar 

  36. Querlioz, D., Bichler, O., Gamrat, C.: Simulation of a memristor-based spiking neural network immune to device variations. In: Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1775–1781. IEEE, San Jose, CA, USA (2011)

    Google Scholar 

  37. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog (1973)

    Google Scholar 

  38. Rocha, M., Cortez, P., Neves, J.: Evolutionary neural network learning. Progress in Artificial Intelligence. Lecture Notes in Computer Science, vol. 2902, pp. 24–28. Springer, Berlin (2003)

    Chapter  Google Scholar 

  39. Rumelhart, D., McClelland, J.: Parallel Distributed Processing, vols. 1 & 2. MIT Press, Cambridge, MA (1986)

    Google Scholar 

  40. Saggie-Wexler, K., Keinan, A., Ruppin, E.: Neural processing of counting in evolved spiking and McCulloch-Pitts agents. Artif. Life 12(1), 1–16 (2006)

    Article  Google Scholar 

  41. Snider, G.: Computing with hysteretic resistor crossbars. Appl. Phys. A 80, 1165–1172 (2005)

    Article  Google Scholar 

  42. Snider, G.: Spike-timing-dependent learning in memristive nanodevices. In: IEEE International Symposium on Nanoscale Architectures, 2008. NANOARCH 2008, pp. 85–92 (2008) https://doi.org/10.1109/NANOARCH.2008.4585796

  43. Soltoggio, A.: Neural plasticity and minimal topologies for reward-based learning. In: Proceedings of the 2008 8th International Conference on Hybrid Intelligent Systems, pp. 637–642. IEEE Computer Society, Washington, DC, USA (2008)

    Google Scholar 

  44. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  45. Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

    Article  Google Scholar 

  46. Urzelai, J., Floreano, D.: Evolution of adaptive synapses: robots with fast adaptive behavior in new environments. Evol. Comput. 9, 495–524 (2001)

    Article  Google Scholar 

  47. Vujisic, M., Stankovic, K., Marianovic, N., Osmokrovic, P.: Simulated effects of proton and ion beam irradiation on titanium dioxide memristors. IEEE Trans. Nucl. Sci. 57(4), 1798–1804 (2010)

    Article  Google Scholar 

  48. Wang, X., Chen, Y.: Spintronic memristor devices and application. In: Proceedings of the Conference on Design, Automation and Test in Europe, European Design and Automation Association, pp. 667–672 (2010)

    Google Scholar 

  49. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  Google Scholar 

  50. Xia, G., Tang, Z., Li, Y., Wang, J.: A binary hopfield neural network with hysteresis for large crossbar packet-switches. Neurocomputing 67, 417–425 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by EPSRC grant number EP/H014381/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard David Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howard, G.D., Bull, L., De Lacy Costello, B., Gale, E., Adamatzky, A. (2019). Evolving Memristive Neural Networks. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics