Skip to main content

Memory Effects in Multi-terminal Solid State Devices and Their Applications

  • Chapter
  • First Online:
Handbook of Memristor Networks

Abstract

We give a general overview on Silicon nanowire-based multi-terminal memristive devices. The functionality of the devices can be used for logic, memory and sensing applications. It is shown that three- and four- terminal memristive devices can be used for both logic and memory applications. In particular, Schottky-barrier silicon nanowire FETs are very interesting devices due to their CMOS-compatibility and ease of fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.itrs.net

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature (2008)

    Google Scholar 

  3. Green, J.E., Wook Choi, J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., Deionno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H., Stoddart, J.F., Heath, J.R.: A 160-kilobit molecular electronic memory patterned at 10\(^{11}\) bits per square centimetre. Nature 445, 414 (2007)

    Article  Google Scholar 

  4. Chua, L.: Memristor-the missing circuit element. Circuit Theory. IEEE Trans. On 18(5), 507 (1971)

    Article  Google Scholar 

  5. Chua, L., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209 (1976)

    Article  MathSciNet  Google Scholar 

  6. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873 (2010)

    Article  Google Scholar 

  7. Wang, F.Z., Helian, N., Wu, S., Lim, M.G., Guo, Y., Parker, M.A.: Delayed switching in memristors and memristive systems. Electron device letters. IEEE 31(7), 755 (2010)

    Article  Google Scholar 

  8. Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145 (2011)

    Article  Google Scholar 

  9. Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., Waser, R.: Nanobatteries in redox-based resistive switches require extension of memristor theory. ArXiv e-prints (2013)

    Google Scholar 

  10. Prodromakis, T., Toumazou, C., Chua, L.: Two centuries of memristors. Nat. Mater. 11(6), 478 (2012)

    Article  Google Scholar 

  11. Waser, R.: Electrochemical and thermochemical memories. Electron Devices Meeting, 2008. IEDM 2008. IEEE International (IEEE, 2008), pp. 1–4

    Google Scholar 

  12. Yao, J., Sun, Z., Zhong, L., Natelson, D., Tour, J.M.: Resistive switches and memories from silicon oxide. Nano Lett. 10(10), 4105 (2010)

    Article  Google Scholar 

  13. Kim, Y.M., Lee, J.S.: Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104(11), 114115 (2008)

    Article  Google Scholar 

  14. Dong, R., Lee, D.S., Xiang, W.F., Oh, S.J., Seong, D.J., Heo, S.H., Choi, H.J., Kwon, M.J., Seo, S.N., Pyun, M.B., Hasan, M., Hwang, H.: Reproducible hysteresis and resistive switching in metal-Cu x O-metal heterostructures. Appl. Phys. Lett. 90(4), 042107 (2007)

    Article  Google Scholar 

  15. Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., Sugiyama, Y.: Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V. Electron Devices Meeting,: IEDM 2007. IEEE Int. 2007, 767–770 (2007)

    Google Scholar 

  16. Chang, W.Y., Lai, Y.C., Wu, T.B., Wang, S.F., Chen, F., Tsai, M.J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92(2), 022110 (2008)

    Article  Google Scholar 

  17. Zhu, W., Chen, T., Liu, Y., Yang, M., Zhang, S., Zhang, W., Fung, S.: Charging-induced changes in reverse current-voltage characteristics of Al/Al-rich Al\(_2\)O\(_3\) p-Si diodes. Electron Devices. IEEE Trans. On 56(9), 2060 (2009)

    Google Scholar 

  18. Driscoll, T., Kim, H.T., Chae, B.G., Ventra, M.D., Basov, D.N.: Phase-transition driven memristive system. Appl. Phys. Lett. 95(4), 043503 (2009)

    Article  Google Scholar 

  19. Blanc, J., Staebler, D.L.: Electrocoloration in SrTiO\(_3\): Vacancy drift and oxidation-reduction of transition metals. Phys. Rev. B 4(10), 3548 (1971)

    Article  Google Scholar 

  20. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007)

    Article  Google Scholar 

  21. Yang, J.J., Pickett, M.D., Li, X., O.A. A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nano. 3(7), 429 (2008)

    Article  Google Scholar 

  22. Kugeler, C., Nauenheim, C., Meier, M., Rudiger, A., Waser, R.: Fast resistance switching of TiO 2 and MSQ thin films for non-volatile memory applications (RRAM). Non-Volatile Memory Technology Symposium, 2008. NVMTS 2008. 9th Annual pp. 1–6 (2008)

    Google Scholar 

  23. Sacchetto, D., Zervas, M., Temiz, Y., De Micheli, G., Leblebici, Y.: Resistive programmable through-silicon vias for reconfigurable 3-D fabrics. Nanotechnology. IEEE Trans. On PP(99), 1 (2011)

    Google Scholar 

  24. Lankhorst, M.H.R., Ketelaars, B.W.S.M.M., Wolters, R.A.M.: Low-cost and nanoscale non-volatile memory concept for future siliconchips. Nat. Mater. 4, 347 (2005)

    Article  Google Scholar 

  25. Cywar, A., Bakan, G., Boztug, C., Silva, H., Gokirmak, A.: Phase-change oscillations in silicon microwires. Appl. Phys. Lett. 94(7), 072111 (2009)

    Article  Google Scholar 

  26. Stewart, D.R., Ohlberg, D.A.A., Beck, P.A., Chen, Y., Williams, R.S., Jeppesen, J.O., Nielsen, K.A., Stoddart, J.F.: Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4(1), 133 (2004)

    Article  Google Scholar 

  27. Pease, A.R., Jeppesen, J.O., Stoddart, J.F., Luo, Y., Collier, C.P., Heath, J.R.: Switching devices based on interlocked molecules. Acc. Chem. Res. 34(6), 433 (2001)

    Article  Google Scholar 

  28. Lau, C.N., Stewart, D.R., Williams, R.S., Bockrath, M.: Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett. 4(4), 569 (2004)

    Article  Google Scholar 

  29. Wang, X., Chen, Y., Xi, H., Li, H., Dimitrov, D.: Spintronic memristor through spin-torque-induced magnetization motion. Electron Device Letters. IEEE 30(3), 294 (2009)

    Google Scholar 

  30. Chanthbouala, A., Matsumoto, R., Grollier, J., Cros, V., Anane, A., Fert, A., Khvalkovskiy, A.V., Zvezdin, K.A., Nishimura, K., Nagamine, Y., Maehara, H., Tsunekawa, K., Fukushima, A., Yuasa, S.: Vertical-current-induced domain-wall motion in MgO-based magneti tunnel junctions with low current densities. Nat. Phys. 7, 626 (2011)

    Article  Google Scholar 

  31. Pershin, Y.V., Di Ventra, M.: Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78(11), 113309 (2008)

    Google Scholar 

  32. Martinez-Rincon, J., Pershin, Y.: Bistable nonvolatile elastic-membrane memcapacitor exhibiting a chaotic behavior. Electron Devices. IEEE Trans. On 58(6), 1809 (2011)

    Article  Google Scholar 

  33. Arkan, E.F., Sacchetto, D., Yildiz, I., Leblebici, Y., Alaca, B.E.: Monolithic integration of Si nanowires with metallic electrodes: NEMS resonator and switch applications. J. Micromechanics Microengineering 21(12), 125018 (2011)

    Article  Google Scholar 

  34. Martinez-Rincon, J., Di Ventra, M., Pershin, Y.V.: Solid-state memcapacitive system with negative and diverging capacitance. Phys. Rev. B 81, 195430 (2010)

    Google Scholar 

  35. Sun, J., Lind, E., Maximov, I., Xu, H.: Memristive and memcapacitive characteristics of a Au/Ti-\(\text{HfO}_{2}\)-InP/InGaAs diode. Electron device letters. IEEE 32(2), 131 (2011)

    Google Scholar 

  36. Chang, S., Sivoththaman, S.: A tunable RF MEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process. Electron device letters. IEEE 27(11), 905 (2006)

    Article  Google Scholar 

  37. Lou, J., Reed, D., Liu, M., Sun, N.: Electrostatically tunable magnetoelectric inductors with large inductance tunability. Appl. Phys. Lett. 94(11), 112508 (2009)

    Article  Google Scholar 

  38. Sacchetto, D., Doucey, M.A., De Micheli, G., Leblebici, Y., Carrara, S.: New insight on bio-sensing by nano-fabricated memristors. BioNanoScience 1, 1 (2011)

    Article  Google Scholar 

  39. Berzina, T., Erokhina, S., Camorani, P., Konovalov, O., Erokhin, V., Fontana, M.: Electrochemical control of the conductivity in an organic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Applied Materials & Interfaces (2009)

    Google Scholar 

  40. Sakamoto, T., Banno, N., Iguchi, N., Kawaura, H., Kaeriyama, S., Mizuno, M., Terabe, K., Hasegawa, T., Aono, M.: Three terminal solid-electrolyte nanometer switch. Electron Devices Meeting: IEDM technical digest. IEEE Int. 2005, 475–478 (2005)

    Google Scholar 

  41. Kaneko, Y., Tanaka, H., Ueda, M., Kato, Y., Fujii, E.: A novel ferroelectric memristor enabling NAND-type analog memory characteristics. Device Research Conference (DRC), 2010, pp. 257 –258 (2010)

    Google Scholar 

  42. Haykel Ben Jamaa, M., Carrara, S., Georgiou, J., Archontas, N., De Micheli, G.: Complete nanowire crossbar framework optimized for the multi-spacer patterning technique. 9th IEEE Conference on. Nanotechnology, 2009. IEEE-NANO 2009. pp. 152 –154 (2009)

    Google Scholar 

  43. Sacchetto, D., Ben-Jamaa, M., De Micheli, G., Leblebici, Y.: Fabrication and characterization of vertically stacked gate-all-around Si nanowire FET arrays. Solid State Device Research Conference, 2009. ESSDERC ’09. Proc. Eur. 2009, 245–248 (2009)

    Google Scholar 

  44. Ziegler, M., Oberländer, M., Schroeder, D., Krautschneider, W.H., Kohlstedt, H.: Memristive operation mode of floating gate transistors: a two-terminal MemFlash-cell. Appl. Phys. Lett. 101(26), 263504 (2012)

    Article  Google Scholar 

  45. Bawedin, M., Cristoloveanu, S., Yun, J., Flandre, D.: A new memory effect (MSD) in fully depleted SOI MOSFETs. Solid-State Electron. 49(9), 1547 (2005)

    Article  Google Scholar 

  46. Bawedin, M., Cristoloveanu, S., Flandre, D.: Innovating SOI memory devices based on floating-body effects. Solid State Electron. 51, 1252 (2007)

    Article  Google Scholar 

  47. Berzina, T., Smerieri, A., Bernabo, M., Pucci, A., Ruggeri, G., Erokhin, V., Fontana, M.P.: Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys. 105(12), 124515 (2009)

    Article  Google Scholar 

  48. Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M.: A nonvolatile programmable solid-electrolyte nanometer switch. Solid-state circuits. IEEE J. Of 40(1), 168 (2005)

    Google Scholar 

  49. Sacchetto, D., Ben-Jamaa, M., Carrara, S., De Micheli, G., Leblebici, Y.: Memristive devices fabricated with silicon nanowire schottky barrier transistors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010), pp. 9 –12

    Google Scholar 

  50. Yang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S.: The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20(21), 215201 (9pp) (2009)

    Article  Google Scholar 

  51. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley (2007)

    Google Scholar 

  52. Appenzeller, J., Knoch, J., Bjork, M., Riel, H., Schmid, H., Riess, W.: Toward nanowire electronics. Electron devices. IEEE Trans. On 55(11), 2827 (2008)

    Article  Google Scholar 

  53. Ecoffey, S., Mazza, M., Pott, V., Bouvet, D., Schmid, A., Leblebici, Y., Declereq, M., Ionescu, A.: A new logic family based on hybrid MOSFET-polysilicon nanowires. Electron devices Meeting, 2005. IEEE International IEDM Technical Digest, pp. 269 –272 (2005)

    Google Scholar 

  54. Ecoffey, S.: Ultra-thin nanograin polysilicon devices for hybrid CMOS-NANO integrated circuits. (No. THESIS). EPFL. p. 154. https://doi.org/10.5075/epfl-thesis-3722, http://library.epfl.ch/theses/?nr=3722 (2007)

  55. Sacchetto, D., De Micheli, G., Leblebici, Y.: Ambipolar Si nanowire field effect transistors for low current and temperature sensing. The 16th International Conference on Solid-State Sensors, Actuators and Microsystems (2011)

    Google Scholar 

  56. Sacchetto, D., Savu, V., Micheli, G.D., Brugger, J., Leblebici, Y.: Ambipolar silicon nanowire FETs with stenciled-deposited metal gate. Microelectron. Eng. 88(8), 2732 (2011)

    Article  Google Scholar 

  57. Zhirnov, V., Cavin, R., Menzel, S., Linn, E., Schmelzer, S., Brauhaus, D., Schindler, C., Waser, R.: Memory devices: energy–spaces–time tradeoffs. Proc. IEEE 98(12), 2185 (2010)

    Article  Google Scholar 

  58. Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M.: Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. IEEE International Electron Devices Meeting, 2008. IEDM 2008 (Dec.), pp. 1–4

    Google Scholar 

  59. Miao, F., Yi, W., Goldfarb, I., Yang, J.J., Zhang, M.X., Pickett, M.D., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S.: Continuous electrical tuning of the chemical composition of TaO x-based memristors. ACS Nano 6(3), 2312 (2012)

    Article  Google Scholar 

  60. Sheu, S.S., Chang, M.F., Lin, K.F., Wu, C.W., Chen, Y.S., Chiu, P.F., Kuo, C.C., Yang, Y.S., Chiang, P.C., Lin, W.P., Lin, C.H., Lee, H.Y., Gu, P.Y., Wang, S.M., Chen, F., Su, K.L., Lien, C.H., Cheng, K.H., Wu, H.T., Ku, T.K., Kao, M.J., Tsai, M.J.: A 4Mb embedded SLC resistive-RAM macro with 7.2 ns read-write random-access time and 160ns MLC-access capability. 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb.), pp. 200–202

    Google Scholar 

  61. Lin, M., El Gamal, A., Lu, Y.C., Wong, S.: Performance benefits of monolithically stacked 3D-FPGA. Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays (ACM, New York, NY, USA, 2006), FPGA ’06, pp. 113–122

    Google Scholar 

  62. Betz, V., Rose, J., Marquardt, A. (eds.): Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA, USA (1999)

    Google Scholar 

  63. Han, K.J., Chan, N., Kim, S., Leung, B., Hecht, V., Cronquist, D., Shum, D., Tilke, A., Pescini, L., Stiftinger, M. Kakoschke, R.: Flash-based field programmable gate array technology with deep trench isolation. Custom Integrated Circuits Conference, 2007. CICC ’07. IEEE (Sept.), pp. 89–91

    Google Scholar 

  64. Liauw, Y.Y., Zhang, Z., Kim, W., Gamal, A., Wong, S.: Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory. 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb.), pp. 406–408

    Google Scholar 

  65. Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403 (2010)

    Article  Google Scholar 

  66. Chen, Y., Lee, H., Chen, P., Tsai, C., Gu, P., Wu, T., Tsai, K., Sheu, S., Lin, W., Lin, C., et al.: Challenges and opportunities for HfO X based resistive random access memory. IEEE International Electron Devices Meeting (IEDM), vol. 31, vol. 31, pp. 1–31 (2011)

    Google Scholar 

  67. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53 (2003)

    Article  Google Scholar 

  68. Jeong, H.Y., Lee, J.Y., Choi, S.Y.: Interface-engineered amorphous TiO2-based resistive memory devices. Adv. Funct. Mater. 20(22), 3912 (2010)

    Article  Google Scholar 

  69. Kim, W.G., Rhee, S.W.: Effect of the top electrode material on the resistive switching of TiO2 thin film. Microelectron. Eng. 87(2), 98 (2010)

    Article  Google Scholar 

  70. Shin, S., Sacchetto, D., Leblebici, Y., Kang, S.M.: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA) (2012), pp. 1 –4

    Google Scholar 

  71. Svensson, J., Sourab, A.A., Tarakanov, Y., Lee, D.S., Park, S.J., Baek, S.J., Park, Y.W., Campbell, E.E.: The dependence of the Schottky barrier height on carbon nanotube diameter for Pd–carbon nanotube contacts. Nanotechnology 20(17), 175204 (2009)

    Article  Google Scholar 

  72. Sacchetto, D., Savu, V., Micheli, G.D., Brugger, J., Leblebici, Y.: Ambipolar silicon nanowire FETs with stenciled-deposited metal gate. Microelectron. Eng. 88(8), 2732 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Michael Zervas as well as Dr. Sandro Carrara for useful discussions. Moreover, the authors thank the CMI staff of EPFL for help with the fabrication. This work has been partially supported by the Swiss NSF Grant No 200021-122168, Swiss NSF Grant No 200021-132539, Nano-Tera Grant No 20NA21-128841, Nano-Tera Grant No 20NA21-128840 and grant ERC-2009-AdG-246810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Emmanuel Gaillardon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sacchetto, D., Gaillardon, PE., Leblebici, Y., De Micheli, G. (2019). Memory Effects in Multi-terminal Solid State Devices and Their Applications. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics