Abstract
We give a general overview on Silicon nanowire-based multi-terminal memristive devices. The functionality of the devices can be used for logic, memory and sensing applications. It is shown that three- and four- terminal memristive devices can be used for both logic and memory applications. In particular, Schottky-barrier silicon nanowire FETs are very interesting devices due to their CMOS-compatibility and ease of fabrication.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature (2008)
Green, J.E., Wook Choi, J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., Deionno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H., Stoddart, J.F., Heath, J.R.: A 160-kilobit molecular electronic memory patterned at 10\(^{11}\) bits per square centimetre. Nature 445, 414 (2007)
Chua, L.: Memristor-the missing circuit element. Circuit Theory. IEEE Trans. On 18(5), 507 (1971)
Chua, L., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209 (1976)
Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873 (2010)
Wang, F.Z., Helian, N., Wu, S., Lim, M.G., Guo, Y., Parker, M.A.: Delayed switching in memristors and memristive systems. Electron device letters. IEEE 31(7), 755 (2010)
Pershin, Y.V., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145 (2011)
Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., Waser, R.: Nanobatteries in redox-based resistive switches require extension of memristor theory. ArXiv e-prints (2013)
Prodromakis, T., Toumazou, C., Chua, L.: Two centuries of memristors. Nat. Mater. 11(6), 478 (2012)
Waser, R.: Electrochemical and thermochemical memories. Electron Devices Meeting, 2008. IEDM 2008. IEEE International (IEEE, 2008), pp. 1–4
Yao, J., Sun, Z., Zhong, L., Natelson, D., Tour, J.M.: Resistive switches and memories from silicon oxide. Nano Lett. 10(10), 4105 (2010)
Kim, Y.M., Lee, J.S.: Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. J. Appl. Phys. 104(11), 114115 (2008)
Dong, R., Lee, D.S., Xiang, W.F., Oh, S.J., Seong, D.J., Heo, S.H., Choi, H.J., Kwon, M.J., Seo, S.N., Pyun, M.B., Hasan, M., Hwang, H.: Reproducible hysteresis and resistive switching in metal-Cu x O-metal heterostructures. Appl. Phys. Lett. 90(4), 042107 (2007)
Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., Sugiyama, Y.: Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V. Electron Devices Meeting,: IEDM 2007. IEEE Int. 2007, 767–770 (2007)
Chang, W.Y., Lai, Y.C., Wu, T.B., Wang, S.F., Chen, F., Tsai, M.J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92(2), 022110 (2008)
Zhu, W., Chen, T., Liu, Y., Yang, M., Zhang, S., Zhang, W., Fung, S.: Charging-induced changes in reverse current-voltage characteristics of Al/Al-rich Al\(_2\)O\(_3\) p-Si diodes. Electron Devices. IEEE Trans. On 56(9), 2060 (2009)
Driscoll, T., Kim, H.T., Chae, B.G., Ventra, M.D., Basov, D.N.: Phase-transition driven memristive system. Appl. Phys. Lett. 95(4), 043503 (2009)
Blanc, J., Staebler, D.L.: Electrocoloration in SrTiO\(_3\): Vacancy drift and oxidation-reduction of transition metals. Phys. Rev. B 4(10), 3548 (1971)
Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007)
Yang, J.J., Pickett, M.D., Li, X., O.A. A., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nano. 3(7), 429 (2008)
Kugeler, C., Nauenheim, C., Meier, M., Rudiger, A., Waser, R.: Fast resistance switching of TiO 2 and MSQ thin films for non-volatile memory applications (RRAM). Non-Volatile Memory Technology Symposium, 2008. NVMTS 2008. 9th Annual pp. 1–6 (2008)
Sacchetto, D., Zervas, M., Temiz, Y., De Micheli, G., Leblebici, Y.: Resistive programmable through-silicon vias for reconfigurable 3-D fabrics. Nanotechnology. IEEE Trans. On PP(99), 1 (2011)
Lankhorst, M.H.R., Ketelaars, B.W.S.M.M., Wolters, R.A.M.: Low-cost and nanoscale non-volatile memory concept for future siliconchips. Nat. Mater. 4, 347 (2005)
Cywar, A., Bakan, G., Boztug, C., Silva, H., Gokirmak, A.: Phase-change oscillations in silicon microwires. Appl. Phys. Lett. 94(7), 072111 (2009)
Stewart, D.R., Ohlberg, D.A.A., Beck, P.A., Chen, Y., Williams, R.S., Jeppesen, J.O., Nielsen, K.A., Stoddart, J.F.: Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4(1), 133 (2004)
Pease, A.R., Jeppesen, J.O., Stoddart, J.F., Luo, Y., Collier, C.P., Heath, J.R.: Switching devices based on interlocked molecules. Acc. Chem. Res. 34(6), 433 (2001)
Lau, C.N., Stewart, D.R., Williams, R.S., Bockrath, M.: Direct observation of nanoscale switching centers in metal/molecule/metal structures. Nano Lett. 4(4), 569 (2004)
Wang, X., Chen, Y., Xi, H., Li, H., Dimitrov, D.: Spintronic memristor through spin-torque-induced magnetization motion. Electron Device Letters. IEEE 30(3), 294 (2009)
Chanthbouala, A., Matsumoto, R., Grollier, J., Cros, V., Anane, A., Fert, A., Khvalkovskiy, A.V., Zvezdin, K.A., Nishimura, K., Nagamine, Y., Maehara, H., Tsunekawa, K., Fukushima, A., Yuasa, S.: Vertical-current-induced domain-wall motion in MgO-based magneti tunnel junctions with low current densities. Nat. Phys. 7, 626 (2011)
Pershin, Y.V., Di Ventra, M.: Spin memristive systems: spin memory effects in semiconductor spintronics. Phys. Rev. B 78(11), 113309 (2008)
Martinez-Rincon, J., Pershin, Y.: Bistable nonvolatile elastic-membrane memcapacitor exhibiting a chaotic behavior. Electron Devices. IEEE Trans. On 58(6), 1809 (2011)
Arkan, E.F., Sacchetto, D., Yildiz, I., Leblebici, Y., Alaca, B.E.: Monolithic integration of Si nanowires with metallic electrodes: NEMS resonator and switch applications. J. Micromechanics Microengineering 21(12), 125018 (2011)
Martinez-Rincon, J., Di Ventra, M., Pershin, Y.V.: Solid-state memcapacitive system with negative and diverging capacitance. Phys. Rev. B 81, 195430 (2010)
Sun, J., Lind, E., Maximov, I., Xu, H.: Memristive and memcapacitive characteristics of a Au/Ti-\(\text{HfO}_{2}\)-InP/InGaAs diode. Electron device letters. IEEE 32(2), 131 (2011)
Chang, S., Sivoththaman, S.: A tunable RF MEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process. Electron device letters. IEEE 27(11), 905 (2006)
Lou, J., Reed, D., Liu, M., Sun, N.: Electrostatically tunable magnetoelectric inductors with large inductance tunability. Appl. Phys. Lett. 94(11), 112508 (2009)
Sacchetto, D., Doucey, M.A., De Micheli, G., Leblebici, Y., Carrara, S.: New insight on bio-sensing by nano-fabricated memristors. BioNanoScience 1, 1 (2011)
Berzina, T., Erokhina, S., Camorani, P., Konovalov, O., Erokhin, V., Fontana, M.: Electrochemical control of the conductivity in an organic memristor: a time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Applied Materials & Interfaces (2009)
Sakamoto, T., Banno, N., Iguchi, N., Kawaura, H., Kaeriyama, S., Mizuno, M., Terabe, K., Hasegawa, T., Aono, M.: Three terminal solid-electrolyte nanometer switch. Electron Devices Meeting: IEDM technical digest. IEEE Int. 2005, 475–478 (2005)
Kaneko, Y., Tanaka, H., Ueda, M., Kato, Y., Fujii, E.: A novel ferroelectric memristor enabling NAND-type analog memory characteristics. Device Research Conference (DRC), 2010, pp. 257 –258 (2010)
Haykel Ben Jamaa, M., Carrara, S., Georgiou, J., Archontas, N., De Micheli, G.: Complete nanowire crossbar framework optimized for the multi-spacer patterning technique. 9th IEEE Conference on. Nanotechnology, 2009. IEEE-NANO 2009. pp. 152 –154 (2009)
Sacchetto, D., Ben-Jamaa, M., De Micheli, G., Leblebici, Y.: Fabrication and characterization of vertically stacked gate-all-around Si nanowire FET arrays. Solid State Device Research Conference, 2009. ESSDERC ’09. Proc. Eur. 2009, 245–248 (2009)
Ziegler, M., Oberländer, M., Schroeder, D., Krautschneider, W.H., Kohlstedt, H.: Memristive operation mode of floating gate transistors: a two-terminal MemFlash-cell. Appl. Phys. Lett. 101(26), 263504 (2012)
Bawedin, M., Cristoloveanu, S., Yun, J., Flandre, D.: A new memory effect (MSD) in fully depleted SOI MOSFETs. Solid-State Electron. 49(9), 1547 (2005)
Bawedin, M., Cristoloveanu, S., Flandre, D.: Innovating SOI memory devices based on floating-body effects. Solid State Electron. 51, 1252 (2007)
Berzina, T., Smerieri, A., Bernabo, M., Pucci, A., Ruggeri, G., Erokhin, V., Fontana, M.P.: Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys. 105(12), 124515 (2009)
Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T., Aono, M.: A nonvolatile programmable solid-electrolyte nanometer switch. Solid-state circuits. IEEE J. Of 40(1), 168 (2005)
Sacchetto, D., Ben-Jamaa, M., Carrara, S., De Micheli, G., Leblebici, Y.: Memristive devices fabricated with silicon nanowire schottky barrier transistors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010), pp. 9 –12
Yang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S.: The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20(21), 215201 (9pp) (2009)
Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley (2007)
Appenzeller, J., Knoch, J., Bjork, M., Riel, H., Schmid, H., Riess, W.: Toward nanowire electronics. Electron devices. IEEE Trans. On 55(11), 2827 (2008)
Ecoffey, S., Mazza, M., Pott, V., Bouvet, D., Schmid, A., Leblebici, Y., Declereq, M., Ionescu, A.: A new logic family based on hybrid MOSFET-polysilicon nanowires. Electron devices Meeting, 2005. IEEE International IEDM Technical Digest, pp. 269 –272 (2005)
Ecoffey, S.: Ultra-thin nanograin polysilicon devices for hybrid CMOS-NANO integrated circuits. (No. THESIS). EPFL. p. 154. https://doi.org/10.5075/epfl-thesis-3722, http://library.epfl.ch/theses/?nr=3722 (2007)
Sacchetto, D., De Micheli, G., Leblebici, Y.: Ambipolar Si nanowire field effect transistors for low current and temperature sensing. The 16th International Conference on Solid-State Sensors, Actuators and Microsystems (2011)
Sacchetto, D., Savu, V., Micheli, G.D., Brugger, J., Leblebici, Y.: Ambipolar silicon nanowire FETs with stenciled-deposited metal gate. Microelectron. Eng. 88(8), 2732 (2011)
Zhirnov, V., Cavin, R., Menzel, S., Linn, E., Schmelzer, S., Brauhaus, D., Schindler, C., Waser, R.: Memory devices: energy–spaces–time tradeoffs. Proc. IEEE 98(12), 2185 (2010)
Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M.: Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. IEEE International Electron Devices Meeting, 2008. IEDM 2008 (Dec.), pp. 1–4
Miao, F., Yi, W., Goldfarb, I., Yang, J.J., Zhang, M.X., Pickett, M.D., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S.: Continuous electrical tuning of the chemical composition of TaO x-based memristors. ACS Nano 6(3), 2312 (2012)
Sheu, S.S., Chang, M.F., Lin, K.F., Wu, C.W., Chen, Y.S., Chiu, P.F., Kuo, C.C., Yang, Y.S., Chiang, P.C., Lin, W.P., Lin, C.H., Lee, H.Y., Gu, P.Y., Wang, S.M., Chen, F., Su, K.L., Lien, C.H., Cheng, K.H., Wu, H.T., Ku, T.K., Kao, M.J., Tsai, M.J.: A 4Mb embedded SLC resistive-RAM macro with 7.2 ns read-write random-access time and 160ns MLC-access capability. 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb.), pp. 200–202
Lin, M., El Gamal, A., Lu, Y.C., Wong, S.: Performance benefits of monolithically stacked 3D-FPGA. Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays (ACM, New York, NY, USA, 2006), FPGA ’06, pp. 113–122
Betz, V., Rose, J., Marquardt, A. (eds.): Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA, USA (1999)
Han, K.J., Chan, N., Kim, S., Leung, B., Hecht, V., Cronquist, D., Shum, D., Tilke, A., Pescini, L., Stiftinger, M. Kakoschke, R.: Flash-based field programmable gate array technology with deep trench isolation. Custom Integrated Circuits Conference, 2007. CICC ’07. IEEE (Sept.), pp. 89–91
Liauw, Y.Y., Zhang, Z., Kim, W., Gamal, A., Wong, S.: Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory. 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (Feb.), pp. 406–408
Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403 (2010)
Chen, Y., Lee, H., Chen, P., Tsai, C., Gu, P., Wu, T., Tsai, K., Sheu, S., Lin, W., Lin, C., et al.: Challenges and opportunities for HfO X based resistive random access memory. IEEE International Electron Devices Meeting (IEDM), vol. 31, vol. 31, pp. 1–31 (2011)
Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48(5–8), 53 (2003)
Jeong, H.Y., Lee, J.Y., Choi, S.Y.: Interface-engineered amorphous TiO2-based resistive memory devices. Adv. Funct. Mater. 20(22), 3912 (2010)
Kim, W.G., Rhee, S.W.: Effect of the top electrode material on the resistive switching of TiO2 thin film. Microelectron. Eng. 87(2), 98 (2010)
Shin, S., Sacchetto, D., Leblebici, Y., Kang, S.M.: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA) (2012), pp. 1 –4
Svensson, J., Sourab, A.A., Tarakanov, Y., Lee, D.S., Park, S.J., Baek, S.J., Park, Y.W., Campbell, E.E.: The dependence of the Schottky barrier height on carbon nanotube diameter for Pd–carbon nanotube contacts. Nanotechnology 20(17), 175204 (2009)
Sacchetto, D., Savu, V., Micheli, G.D., Brugger, J., Leblebici, Y.: Ambipolar silicon nanowire FETs with stenciled-deposited metal gate. Microelectron. Eng. 88(8), 2732 (2011)
Acknowledgements
The authors would like to thank Dr. Michael Zervas as well as Dr. Sandro Carrara for useful discussions. Moreover, the authors thank the CMI staff of EPFL for help with the fabrication. This work has been partially supported by the Swiss NSF Grant No 200021-122168, Swiss NSF Grant No 200021-132539, Nano-Tera Grant No 20NA21-128841, Nano-Tera Grant No 20NA21-128840 and grant ERC-2009-AdG-246810.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sacchetto, D., Gaillardon, PE., Leblebici, Y., De Micheli, G. (2019). Memory Effects in Multi-terminal Solid State Devices and Their Applications. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-76375-0_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76374-3
Online ISBN: 978-3-319-76375-0
eBook Packages: Computer ScienceComputer Science (R0)