Skip to main content

On the Cross-Combined Measure of Families of Binary Lattices and Sequences

  • Conference paper
  • First Online:
Number-Theoretic Methods in Cryptology (NuTMiC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10737))

Included in the following conference series:

  • 641 Accesses

Abstract

The cross-combined measure (which is a natural extension of the cross-correlation measure) is introduced and important constructions of large families of binary lattices with optimal or nearly optimal cross-combined measures are presented. These results are also strongly related to the one-dimensional case: An easy method is shown obtaining strong constructions of families of binary sequences with nearly optimal cross-correlation measures based on the previous constructions of families of lattices. The important feature of this result is that so far there exists only one type of construction of very large families of binary sequences with small cross-correlation measure, and this only type of construction was based on one-variable irreducible polynomials. However there are relatively fast algorithms to construct one-variable irreducible polynomials, still in certain applications these algorithms are too complicated or are not fast enough, thus it became necessary to show other types of constructions where the generation of sequences is much faster. Using binary lattices based on two-variable irreducible polynomials this problem can be avoided. (Since, contrary to one-variable polynomials, using the Schöneman-Eisenstein criteria it is possible to generate two-variable irreducible polynomials over \(\mathbb F_p\) easily and very fast.)

Research partially supported by Hungarian National Research Development and Innovation Funds NK 104183 and K 119528.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlswede, R., Khachatrian, L.H., Mauduit, C., Sárközy, A.: A complexity measure for families of binary sequences. Period. Math. Hung. 46, 107–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlswede, R., Mauduit, C., Sárközy, A.: Large families of pseudorandom sequences of k symbols and their complexity – part I. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 293–307. Springer, Heidelberg (2006). https://doi.org/10.1007/11889342_16

    Chapter  Google Scholar 

  3. Ahlswede, R., Mauduit, C., Sárközy, A.: Large families of pseudorandom sequences of k symbols and their complexity – part II. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 308–325. Springer, Heidelberg (2006). https://doi.org/10.1007/11889342_17

    Chapter  Google Scholar 

  4. Alon, N., Kohayakawa, Y., Mauduit, C., Moreira, C.G., Rödl, V.: Measures of pseudorandomness for finite sequences: typical values. Proc. Lond. Math. Soc. 95, 778–812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anantharam, V.: A technique to study the correlation measures of binary sequences. Discret. Math. 308, 6203–6209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bérczes, A., Ködmön, J., Pethő, A.: A one-way function based on norm form equations. Period. Math. Hung. 49, 1–13 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cassaigne, J., Ferenczi, S., Mauduit, C., Rivat, J., Sárközy, A.: On finite pseudorandom binary sequences III: the Liouville function, I. Acta Arith. 87, 367–384 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cassaigne, J., Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences VII: the measures of pseudorandomness. Acta Arith. 103, 97–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delinge, P.: La conjecture de Weil, I. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 43, 273–307 (1974)

    Article  MathSciNet  Google Scholar 

  10. Delinge, P.: La conjecture de Weil, II. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 43, 137–250 (1980)

    MathSciNet  Google Scholar 

  11. Feistel, H., Notz, W.A., Smith, J.L.: Some cryptographic techniques for machine-to-machine data communications. Proc. IEEE 63, 1545–1554 (1975)

    Article  Google Scholar 

  12. Fouvry, E., Katz, N.: A general stratification theorem for exponential sums, and applications. Journal für die reine und angewandte Mathematik 540, 115–166 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Gong, G.: Character sums and polyphase sequence families with low correlation, discrete fourier transform (DFT), and ambiguty. In: Pascale, C., et al. (eds.) Finite Fields and Their Applications. Radon Series on Computational and Applied Mathematics, vol. 11, pp. 1–42. de Gruyter, Berlin (2013)

    Google Scholar 

  14. Goubin, L., Mauduit, C., Sárközy, A.: Construction of large families of pseudorandom binary sequences. J. Number Theory 106, 56–69 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gyarmati, K.: Concatenation of pseudorandom binary sequences. Period. Math. Hung. 58, 99–120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gyarmati, K.: On the complexity of a family related to the Legendre symbol. Period. Math. Hung. 58, 209–215 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gyarmati, K.: On the correlation of subsequences. Unif. Distrib. Theory 7, 169–195 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Gyarmati, K., Mauduit, C., Sárközy, A.: Pseudorandom binary sequences and lattices. Acta Arith. 135, 181–197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of finite binary lattices, I (The measures \(Q_k\), normality.). Acta Arith. 144, 295–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of finite binary lattices, III (\(Q_k\), correlation, normality, minimal values.). Unif. Distrib. Theory 5, 183–207 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Gyarmati, K., Mauduit, C., Sárközy, A.: The cross-correlation measure for families of binary sequences. In: Larcher, G., Pillichshammer, F., Winterhof, A., Xing, C. (eds.) Applications of Algebra and Number Theory (Lectures on the occasion of Harald Niederreiter’s 70th Birthday) (2014)

    Google Scholar 

  22. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of finite binary lattices, I. (The measures \(Q_k\), normality.). Acta Arith. 144, 295–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of finite binary lattices, II. (The symmetry measures.). Ramanujan J. 25, 155–178 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of finite binary lattices, III. (\(Q_k\), correlation, normality, minimal values). Unif. Distrib. Theory 5, 183–207 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Gyarmati, K., Sárközy, A., Stewart, C.L.: On Legendre symbol lattices. Unif. Distrib. Theory 4, 81–95 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Gyarmati, K., Sárközy, A., Stewart, C.L.: On Legendre symbol lattices, II. Unif. Distrib. Theory 8, 47–65 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Hoffstein, J., Lieman, D.: The distribution of the quadratic symbol in function fields and a faster mathematical stream cipher. In: Lam, K.Y., Shparlinski, I., Wang, H., Xing, C. (eds.) Cryptography and Computational Number Theory. PCS, vol. 20, pp. 59–68. Birkhäuser Verlag, Basel (2001)

    Chapter  Google Scholar 

  28. Hubert, P., Mauduit, C., Sárközy, A.: On pseudorandom binary lattices. Acta Arith. 125, 51–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kam, J., Davida, G.: Structured design of substitution-permutation encryption networks. IEEE Trans. Comput. 28, 747–753 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences I: measures of pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mauduit, C., Sárközy, A.: On large families of pseudorandom binary lattices. Unif. Distrib. Theory 2, 23–37 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Mauduit, C., Sárközy, A.: Family complexity and VC-dimension. In: Aydinian, H., Cicalese, F., Deppe, C. (eds.) Information Theory, Combinatorics, and Search Theory. LNCS, vol. 7777, pp. 346–363. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36899-8_15

    Chapter  Google Scholar 

  33. Menezes, A., van Oorschot, P.C., Vanstone, S.: Handbook of Applied Cryptography. CRS Press, Boca Raton (1997)

    MATH  Google Scholar 

  34. Mérai, L.: On the typical values of the cross-correlation measure. Monatsh. Math. 180(1), 83–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mérai, L.: The cross-correlation measure of families of finite binary sequences: limiting distributions and minimal values. Discret. Appl. Math. 214, 153–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mérai, L., Rivat, J., Sárközy, A.: The measures of pseudorandomness and the NIST tests. In: Kaczorowski, J., et al. (eds.) NuTMiC 2017. LNCS, vol. 10737, pp. 197–216. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-76620-1_12

    Google Scholar 

  37. Mullen, G.L., Panario, D.: Handbook of Finite Fields. Chapman and Hall/CRC, Boca Raton (2013)

    Book  MATH  Google Scholar 

  38. Rédei, L.: Algebra. Pergamon Press, Oxford/New York/Toronto (1967)

    MATH  Google Scholar 

  39. Rivat, J., Sárközy, A.: On pseudorandom sequences and their application. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) General Theory of Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 343–361. Springer, Heidelberg (2006). https://doi.org/10.1007/11889342_19

    Chapter  Google Scholar 

  40. Tóth, V.: Collision and avalanche effect in families of pseudorandom binary sequences. Period. Math. Hung. 55, 185–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tóth, V.: The study of collision and avalanche effect in a family of pseudorandom binary sequences. Period. Math. Hung. 59, 1–8 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent, Act. Sci. Ind. 1041 (1948)

    Google Scholar 

  43. Winterhof, A.: Some estimates for character sums and applications. Des. Codes Crypt. 22, 123–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

I would like to thank the referee for his careful reading and valuable advice concerning Theorem 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Gyarmati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gyarmati, K. (2018). On the Cross-Combined Measure of Families of Binary Lattices and Sequences. In: Kaczorowski, J., Pieprzyk, J., Pomykała, J. (eds) Number-Theoretic Methods in Cryptology. NuTMiC 2017. Lecture Notes in Computer Science(), vol 10737. Springer, Cham. https://doi.org/10.1007/978-3-319-76620-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76620-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76619-5

  • Online ISBN: 978-3-319-76620-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics