Skip to main content

Reciprocation Effort Games

  • Conference paper
  • First Online:
Artificial Intelligence (BNAIC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 823))

Included in the following conference series:

  • 1696 Accesses

Abstract

Consider people dividing their time and effort between friends, interest clubs, and reading seminars. These are all reciprocal interactions, and the reciprocal processes determine the utilities of the agents from these interactions. To advise on efficient effort division, we determine the existence and efficiency of the Nash equilibria of the game of allocating effort to such projects. When no minimum effort is required to receive reciprocation, an equilibrium always exists, and if acting is either easy to everyone, or hard to everyone, then every equilibrium is socially optimal. If a minimal effort is needed to participate, we prove that not contributing at all is an equilibrium, and for two agents, also a socially optimal equilibrium can be found. Next, we extend the model, assuming that the need to react requires more than the agents can contribute to acting, rendering the reciprocation imperfect. We prove that even then, each interaction converges and the corresponding game has an equilibrium.

G. Polevoy—Most of this work was done at Delft University of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A combination is convex if it has nonnegative weights that sum up to 1.

  2. 2.

    Contributions by default refer to the contributions at time zero.

  3. 3.

    \(\beta _i > 1\) implies negative utilities that sometimes result in negative \({{\mathrm{PoA}}}\) and \({{\mathrm{PoS}}}\).

  4. 4.

    The actual limit does not have to be zero; zero is just the result from the contradictory assumption.

References

  1. Anshelevich, E., DasGupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 295–304, October 2004

    Google Scholar 

  2. Anshelevich, E., Hoefer, M.: Contribution games in social networks. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 158–169. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_14

    Chapter  Google Scholar 

  3. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

    MATH  Google Scholar 

  4. Bachrach, Y., Syrgkanis, V., Vojnović, M.: Efficiency and the Redistribution of Welfare. Technical report, May, Microsoft Reserach (2012)

    Google Scholar 

  5. Baye, M.R., Kovenock, D., de Vries, C.G.: The all-pay auction with complete information. Econ. Theor. 8(2), 291–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bicchieri, C.: The Grammar of Society: The Nature and Dynamics of Social Norms. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  7. Dixon, W.J.: Reciprocity in United States-Soviet relations: multiple symmetry or issue linkage? Am. J. Polit. Sci. 30(2), 421–445 (1986)

    Article  Google Scholar 

  8. Dufwenberg, M., Kirchsteiger, G.: A theory of sequential reciprocity. Games Econ. Behav. 47(2), 268–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ennett, S.T., Bauman, K.E.: Adolescent social networks: friendship cliques, social isolates, and drug use risk, pp. 83–92. Tanglewood Research Inc., Greensboro, North Carolina (2000)

    Google Scholar 

  10. Falk, A., Fischbacher, U.: A theory of reciprocity. Games Econ. Behav. 54(2), 293–315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fehr, E., Fischbacher, U., Gächter, S.: Strong reciprocity, human cooperation, and the enforcement of social norms. Hum. Nat. 13(1), 1–25 (2002)

    Article  Google Scholar 

  12. Fehr, E., Gächter, S.: Fairness and retaliation: the economics of reciprocity. J. Econ. Perspect. 14(3), 159–181 (2000)

    Article  Google Scholar 

  13. Gottman, J., Swanson, C., Murray, J.: The mathematics of marital conflict: dynamic mathematical nonlinear modeling of newlywed marital interaction. J. Fam. Psychol. 13, 3–19 (1999)

    Article  Google Scholar 

  14. Kleinberg, J., Oren, S.: Mechanisms for (mis)allocating scientific credit. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 529–538. ACM, New York (2011)

    Google Scholar 

  15. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, pp. 404–413, 4–6 March 1999

    Google Scholar 

  16. Nie, N.H., Hillygus, D.S.: Where does internet time come from? A reconnaissance. IT Soc. 1, 1–20 (2002)

    Google Scholar 

  17. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  18. Osborne, M.J., Rubinstein, A.: A Course in Game Theory, vol. 1. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  19. Polevoy, G., de Weerdt, M., Jonker, C.: The game of reciprocation habits. In: Proceedings of the 2016 European Conference on Artificial Intelligence (ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 417–425 (2016)

    Google Scholar 

  20. Polevoy, G., Trajanovski, S., de Weerdt, M.M.: Nash equilibria in shared effort games. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2014), pp. 861–868. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2014)

    Google Scholar 

  21. Polevoy, G., de Weerdt, M., Jonker, C.: The convergence of reciprocation. In: Proceedings of the 2016 International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016), pp. 1431–1432. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2016)

    Google Scholar 

  22. Rabin, M.: Incorporating fairness into game theory and economics. Am. Econ. Rev. 83(5), 1281–1302 (1993)

    Google Scholar 

  23. Schulz, A.S., Moses, N.S.: On the performance of user equilibria in traffic networks. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 86–87. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Google Scholar 

  24. Seneta, E.: Non-negative Matrices and Markov Chains. Springer Series in Statistics. Springer, New York (2006). https://doi.org/10.1007/0-387-32792-4

    MATH  Google Scholar 

  25. Siegel, R.: All-pay contests. Econometrica 77(1), 71–92 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Trivers, R.L.: The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971)

    Article  Google Scholar 

  27. Van Segbroeck, S., Pacheco, J.M., Lenaerts, T., Santos, F.C.: Emergence of fairness in repeated group interactions. Phys. Rev. Lett. 108, 158104 (2012)

    Article  Google Scholar 

  28. Ward, M.D.: Modeling the USA-USSR arms race. Trans. Soc. Model. Simul. Int. 43, 196–203 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Orr M. Shalit from the Technion, Israel for the useful discussions. This work has been supported by SHINE, the flagship project of DIRECT (Delft Institute for Research on ICT at the TU Delft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Polevoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polevoy, G., de Weerdt, M. (2018). Reciprocation Effort Games. In: Verheij, B., Wiering, M. (eds) Artificial Intelligence. BNAIC 2017. Communications in Computer and Information Science, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-76892-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76892-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76891-5

  • Online ISBN: 978-3-319-76892-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics