Abstract
Examining the properties of representation spaces for documents or words in Information Retrieval (IR) – typically \(\mathbb {R}^n\) with n large – brings precious insights to help the retrieval process. Recently, several authors have studied the real dimensionality of the datasets, called intrinsic dimensionality, in specific parts of these spaces [14]. They have shown that this dimensionality is chiefly tied with the notion of indiscriminateness among neighbors of a query point in the vector space. In this paper, we propose to revisit this notion in the specific case of IR. More precisely, we show how to estimate indiscriminateness from IR similarities in order to use it in representation spaces used for documents and words [7, 18]. We show that indiscriminateness may be used to characterize difficult queries; moreover we show that this notion, applied to word embeddings, can help to choose terms to use for query expansion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amati, G., Rijsbergen, C.J.V.: Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20, 357–389 (2002)
Amsaleg, L., Oussama, C., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K.I.: Estimating local intrinsic dimensionality. In: 21st Conference on Knowledge Discovery and Data Mining, KDD 2015, Sidney, Australia, August 2015. https://hal.inria.fr/hal-01159217
Bellogín, A., de Vries, A.P.: Understanding similarity metrics in neighbour-based recommender systems. In: Proceedings of the 2013 Conference on the Theory of Information Retrieval, ICTIR 2013, pp. 13:48–13:55. ACM, New York (2013). http://doi.acm.org/10.1145/2499178.2499186
Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbors. In: Proceedings of International Conference on Machine Learning (ICML), pp. 97–104 (2006)
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)
Claveau, V., Kijak, E.: Direct vs. indirect evaluation of distributional thesauri. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1837–1848. The COLING 2016 Organizing Committee, Osaka, December 2016. http://aclweb.org/anthology/C16-1173
Claveau, V., Kijak, E., Ferret, O.: Improving distributional thesauri by exploring the graph of neighbors. In: International Conference on Computational Linguistics, COLING 2014, Dublin, August 2014. https://hal.archives-ouvertes.fr/hal-01027545
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391 (1990)
Fang, H., Tao, T., Zhai, C.: Diagnostic evaluation of information retrieval models. ACM Trans. Inf. Syst. 29, 7 (2011)
Hersh, W., Buckley, C., Leone, T.J., Hickam, D.: OHSUMED: an interactive retrieval evaluation and new large test collection for research. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1994, pp. 192–201. Springer-Verlag, New York Inc., New York (1994). http://dl.acm.org/citation.cfm?id=188490.188557
Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent dirichlet allocation. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 856–864. Curran Associates, Inc. (2010). http://papers.nips.cc/paper/3902-online-learning-for-latent-dirichlet-allocation.pdf
Houle, M.E., Ma, X., Nett, M., Oria, V.: Dimensional testing for multi-step similarity search. In: Proceedings of the 12th IEEE International Conference on Data Mining (ICDM), pp. 299–308 (2012)
Houle, M.E., Nett, M.: Rank cover trees for nearest neighbor search. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 16–29. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_3
Houle, M., Kashima, H., Nett, M.: Generalized expansion dimension. In: Proceedings of the 12th IEEE International Conference on Data Mining Workshops (ICDMW), pp. 587–594 (2012)
Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: Advances in Neural Information Processing Systems (NIPS) (2004)
Lv, Y., Zhai, C.: Lower-bounding term frequency normalization. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Managementm, CIKM 2011, pp. 7–16. ACM, New York (2011). http://doi.acm.org/10.1145/2063576.2063584
Metzler, D., Croft, W.: Combining the language model and inference network approaches to retrieval. Inf. Process. Manag. 40(5), 735–750 (2004). Special Issue on Bayesian Networks and Information Retrieval
Mikolov, T., Yih, W.t., Zweig, G.: Linguistic regularities in continuous space word representations. In: 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2013), Atlanta, Georgia, pp. 746–751 (2013)
Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual international ACM SIGIR Conference on Research and Development in information Retrieval (SIGIR 1998), pp. 275–281 (1998)
Robertson, S.E., Walker, S., Hancock-Beaulieu, M.: Okapi at TREC-7: automatic ad hoc, filtering, VLC and interactive track. In: Proceedings of the 7th Text Retrieval Conference, TREC-7, pp. 199–210 (1998)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Scholkopf, B., Smola, A.J., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)
Singhal, A.: Modern information retrieval: a brief overview. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 24, 35–43 (2001)
Strohman, T., Metzler, D., Turtle, H., Croft, W.: Indri: a language-model based search engine for complex queries (extended version). Technical report CIIR (2005)
Turtle, H., Croft, W.: Evaluation of an inference network-based retrieval model. ACM Trans. Inf. Syst. 9(3), 187–222 (1991)
Venna, J., Kaski, S.: Local multidimensional scaling. Neural Netw. 19, 889–899 (2006)
de Vries, T., Chawla, S., Houle, M.E.: Density-preserving projections for large-scale local anomaly detection. Knowl. Inf. Syst. 32(1), 25–52 (2012)
Zhai, C., Lafferty, J.D.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proceedings of the SIGIR Conference, pp. 334–342 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Claveau, V. (2018). Indiscriminateness in Representation Spaces of Terms and Documents. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-76941-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76940-0
Online ISBN: 978-3-319-76941-7
eBook Packages: Computer ScienceComputer Science (R0)