Skip to main content

Zero-Sum Partitions of PHOTON Permutations

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2018 (CT-RSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10808))

Included in the following conference series:

  • 1270 Accesses

Abstract

We describe an approach to zero-sum partitions using Todo’s division property at EUROCRYPT 2015. It follows the inside-out methodology, and includes MILP-assisted search for the forward and backward trails, and subspace approach to connect those two trails that is less restrictive than commonly done.

As an application we choose PHOTON, a family of sponge-like hash function proposals that was recently standardized by ISO. With respect to the security claims made by the designers, we for the first time show zero-sum partitions for almost all of those full 12-round permutation variants that use a 4-bit S-Box. As with essentially any other zero-sum property in the literature, also here the gap between a generic attack and the shortcut is small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We mention that our distinguishers have only a small advantage (approximately a factor 2) when compared to the generic attack.

  2. 2.

    A C/C++ program that verifies our 8 inequalities can cover DDT of PRESENT as the ones given in [32] can be provided if requested. We note that a smaller number of inequalities could help to accelerate searching for zero-sum partitions in some cases (e.g. when the state size is getting large).

  3. 3.

    Let two vectors \(\mathbf{k} = (k_0, k_1, \ldots , k_{m-1})\) and \(\mathbf{k}^\prime = (k^\prime _0, k^\prime _1, \ldots , k^\prime _{m-1}) \in \mathbb {Z}^m\), define \(k \succeq k^\prime \) if \(k_i \ge k^\prime _i\) for all \(0\le i\le m-1\); otherwise we denote \(k \nsucceq k^\prime \).

  4. 4.

    In order to explain such result, Gilbert propose that super-Sbox notation, where super-\(Sbox(\cdot ) := \) S-Box \(\circ ARK \circ MC \circ \) S-Box\((\cdot )\). The same result has been explained in details in [16] using the subspace trail notation.

  5. 5.

    More precisely, S-Box(aaac) is a subset of 8 elements of \(\{0x0, 0x1,\ldots , 0xf\}\). On the other hand, such subset depends on the details of the S-Box function and doesn’t have any particular property.

  6. 6.

    Given a fixed set \(\{a_i\}_i\), they satisfy the required equality with probability \(2^{-2n}\). It follows that given \(2n+\varepsilon \) sets, at least one of them satisfy it with probability \(1-(1-2^{-2n})^{2n+\varepsilon } \approx 1-e^\varepsilon \), assuming \(2n \gg 1\). For a probability of success higher than 99.99%, it follows \(\varepsilon \ge 10\).

References

  1. http://www.ibm.com/software/integration/optimization/cplex-optimizer/

  2. http://www.gurobi.com/

  3. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi. In: Presented at the Rump Session of Cryptographic Hardware and Embedded Systems - CHES 2009 (2009). https://131002.net/data/papers/AM09.pdf

  4. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_13

    Google Scholar 

  5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Note on zero-sum distinguishers of Keccak-f. http://keccak.noekeon.org/NoteZeroSum.pdf

  6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop (2007)

    Google Scholar 

  7. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_24

    Chapter  Google Scholar 

  8. Boura, C., Canteaut, A.: A zero-sum property for the Keccak-\(f\) permutation with 18 rounds. In: Proceedings of the IEEE International Symposium on Information Theory, ISIT 2010, Austin, Texas, USA, 13–18 June 2010, pp. 2488–2492. IEEE (2010). https://doi.org/10.1109/ISIT.2010.5513442

  9. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 654–682. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_24

    Chapter  Google Scholar 

  10. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052343

    Chapter  Google Scholar 

  11. Dobbertin, H.: Cryptanalysis of MD5 compress. In: Presented at the Rump Session of Eurocrypt 1996 (1996)

    Google Scholar 

  12. Dobbertin, H.: The status of MD5 after a recent attack. CryptoBytes 2(2) (1996). ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.pdf

  13. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-\(f\) permutation. Chin. Sci. Bull. 57(6), 694–697 (2012)

    Article  Google Scholar 

  14. Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_11

    Google Scholar 

  15. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Candidate Conference, pp. 230–241 (2000)

    Google Scholar 

  16. Grassi, L., Rechberger, C.: New and old limits for AES known-key distinguishers. Cryptology ePrint Archive, Report 2017/255 (2017). http://eprint.iacr.org/2017/255

  17. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its applications to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2017). http://tosc.iacr.org/index.php/ToSC/article/view/571

    Google Scholar 

  18. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

    Chapter  Google Scholar 

  19. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_7

    Chapter  Google Scholar 

  20. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_19

    Chapter  Google Scholar 

  21. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_9

    Chapter  Google Scholar 

  22. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_16

    Chapter  Google Scholar 

  23. Lucks, S.: Attacking seven rounds of Rijndael under 192-bit and 256-bit keys. In: AES Candidate Conference, pp. 215–229 (2000)

    Google Scholar 

  24. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primitives with non-bit-permutation linear layers. Cryptology ePrint Archive, Report 2016/811 (2016). http://eprint.iacr.org/2016/811

  25. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

    Google Scholar 

  26. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_20

    Chapter  Google Scholar 

  27. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

    Google Scholar 

  28. Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18

    Chapter  Google Scholar 

  29. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

    Chapter  Google Scholar 

  30. Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permutations. Cryptology ePrint Archive, Report 2017/1211 (2017). http://eprint.iacr.org/2017/1211

  31. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_9

    Google Scholar 

  32. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

    Chapter  Google Scholar 

  33. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary diffusion layer. Cryptology ePrint Archive, Report 2017/188 (2017). http://eprint.iacr.org/2017/188

Download references

Acknowledgements

The authors would like to thank Meicheng Liu and Jian Guo for their fruitful discussions, and the anonymous reviewers for their comments. This work was supported partially by National Natural Science Foundation of China (No. 61472250, No. 61672347), Major State Basic Research Development Program (973 Plan, No. 2013CB338004), and Program of Shanghai Academic/Technology Research Leader (No. 16XD1401300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingju Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Grassi, L., Rechberger, C. (2018). Zero-Sum Partitions of PHOTON Permutations. In: Smart, N. (eds) Topics in Cryptology – CT-RSA 2018. CT-RSA 2018. Lecture Notes in Computer Science(), vol 10808. Springer, Cham. https://doi.org/10.1007/978-3-319-76953-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76953-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76952-3

  • Online ISBN: 978-3-319-76953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics