Skip to main content

Revocable Identity-Based Encryption from Codes with Rank Metric

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2018 (CT-RSA 2018)

Abstract

In this paper, we present an identity-based encryption scheme from codes with efficient key revocation. Recently, in Crypto 2017, Gaborit et al. proposed a first identity-based encryption scheme from codes with rank metric, called RankIBE. To extract the decryption key from any public identity, they constructed a trapdoor function which relies on RankSign, a signature scheme proposed by Gaborit et al. in PQCrypto 2014. We adopt the same trapdoor function to add efficient key revocation functionality in the RankIBE scheme. Our revocable IBE scheme from codes with rank metric makes use of a binary tree data structure to reduce the amount of work in terms of key updates for the key authority. The total size of key updates requires logarithmic complexity in the maximum number of users and linear in the number of revoked users. We prove that our revocable IBE scheme is selective-ID secure in the random oracle model, under the hardness of three problems: the Rank Syndrome Decoding (RSD) problem, the Augmented Low Rank Parity Check Code (\(\textsf {LRPC}^+\)) problem, and the Rank Support Learning (RSL) problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  Google Scholar 

  2. Aiello, W., Lodha, S., Ostrovsky, R.: Fast digital identity revocation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 137–152. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055725

    Google Scholar 

  3. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryptosystem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_17

    Chapter  Google Scholar 

  4. Baldi, M., Chiaraluce, F., Garello, R.: On the usage of quasi-cyclic low-density parity-check codes in the McEliece cryptosystem. In: 2006 First International Conference on Communications and Electronics, pp. 305–310, October 2006

    Google Scholar 

  5. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-cyclic low-density parity-check codes in the McEliece cryptosystem. In: 2007 IEEE International Conference on Communications, pp. 951–956, June 2007

    Google Scholar 

  6. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6

    Chapter  Google Scholar 

  7. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

    Article  MATH  Google Scholar 

  8. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of the 2008 ACM Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, 27–31 October 2008, pp. 417–426 (2008)

    Google Scholar 

  9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  10. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31448-3_29

    Chapter  Google Scholar 

  11. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-Tone, D.: Report on post-quantum cryptography. National Institute of Standards and Technology Internal Report 8105 (2016)

    Google Scholar 

  12. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14

    Chapter  Google Scholar 

  13. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Peredachi Informatsii 21, 3–16 (1985)

    MathSciNet  MATH  Google Scholar 

  14. Gaborit, P.: Shorter keys for code based cryptography. In: Internatinal Workshop on Coding and Cryptography-WCC’2205, pp. 81–91 (2004)

    Google Scholar 

  15. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.: Identity-based encryption from codes with rank metric. IACR Cryptology ePrint Archive 2017/514 (2017)

    Google Scholar 

  16. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography WCC’2013 (2013)

    Google Scholar 

  17. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: RankSign: an efficient signature algorithm based on the rank metric. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 88–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_6

    Google Scholar 

  18. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gallager, R.G.: Low-density parity -check codes. Ph.D. thesis. MIT Press (1963)

    Google Scholar 

  20. Hauteville, A., Tillich, J.P.: New algorithms for decoding in the rank metric and an attack on the LRPC cryptosystem. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 2747–2751, June 2015

    Google Scholar 

  21. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_1

    Chapter  Google Scholar 

  22. Loidreau, P.: Asymptotic behaviour of codes in rank metric over finite fields. Des. Codes Crypt. 71(1), 105–118 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Prog. Rep. 44, 114–116 (1978)

    Google Scholar 

  24. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24

    Chapter  Google Scholar 

  25. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: 2013 IEEE International Symposium on Information Theory, pp. 2069–2073, July 2013

    Google Scholar 

  26. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in the McEliece cryptosystem. In: 2000 IEEE International Symposium on Information Theory, p. 215 (2000)

    Google Scholar 

  27. Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE J. Sel. Areas Commun. 18(4), 561–570 (2000)

    Article  Google Scholar 

  28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  29. Shor, P.W.: Polynominal time algorithms for discrete logarithms and factoring on a quantum computer. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS-I. Springer, Heidelberg (1994)

    Google Scholar 

  30. Wang, J., Bi, J.: Lattice-based identity-based broadcast encryption scheme. IACR Cryptology ePrint Archive 2010/288 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, D., Chauhan, A.K., Kumar, S., Sanadhya, S.K. (2018). Revocable Identity-Based Encryption from Codes with Rank Metric. In: Smart, N. (eds) Topics in Cryptology – CT-RSA 2018. CT-RSA 2018. Lecture Notes in Computer Science(), vol 10808. Springer, Cham. https://doi.org/10.1007/978-3-319-76953-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76953-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76952-3

  • Online ISBN: 978-3-319-76953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics