Skip to main content

Strategies to Select Examples for Active Learning with Conditional Random Fields

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10761))

  • 953 Accesses

Abstract

Nowadays, many NLP problems are tackled as supervised machine learning tasks. Consequently, the cost of the expertise needed to annotate the examples is a widespread issue. Active learning offers a framework to that issue, allowing to control the annotation cost while maximizing the classifier performance, but it relies on the key step of choosing which example will be proposed to the expert. In this paper, we examine and propose such selection strategies in the specific case of Conditional Random Fields (CRF) which are largely used in NLP. On the one hand, we propose a simple method to correct a bias of some state-of-the-art selection techniques. On the other hand, we detail an original approach to select the examples, based on the respect of proportions in the datasets. These contributions are validated over a large range of experiments implying several datasets and tasks, including named entity recognition, chunking, phonetization, word sense disambiguation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, N., Mamitsuka, H.: Query learning strategies using boosting and bagging. In: Proceedings of the Fifteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc, Madison (1998)

    Google Scholar 

  2. Ando, R.K., Zhang, T.: A high-performance semi-supervised learning method for text chunking. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. ACL 2005, pp. 1–9. Association for Computational Linguistics, Stroudsburg (2005). https://doi.org/10.3115/1219840.1219841

  3. Chen, S.: Performance prediction for exponential language models. In: Proceedings of Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 450–458, June 2009

    Google Scholar 

  4. Constant, M., Tellier, I., Duchier, D., Dupont, Y., Sigogne, A., Billot, S.: Intégrer des connaissances linguistiques dans un CRF: application à l’apprentissage d’un segmenteur-étiqueteur du français. In: Traitement Automatique du Langage Naturel (TALN’11), Montpellier, France (2011)

    Google Scholar 

  5. Edmonds, P., Cotton, S.: Senseval-2: Overview. In: Proceedings of SENSEVAL-2 Second International Workshop on Evaluating Word Sense Disambiguation Systems, pp. 1–5. Association for Computational Linguistics (2001). http://aclweb.org/anthology/S01-1001

  6. Freitag, D.: Trained named entity recognition using distributional clusters. In: Proceedings of the Conference EMNLP (2004)

    Google Scholar 

  7. Garrette, D., Baldridge, J.: Learning a part-of-speech tagger from two hours of annotation, pp. 138–147, June 2013. http://www.cs.utexas.edu/users/ai-lab/?garrette:naacl13

  8. Gravier, G., Bonastre, J.F., Geoffrois, E., Galliano, S., Tait, K.M., Choukri, K.: ESTER, une campagne d’évaluation des systèmes d’indexation automatique. In: Actes des Journées d’Étude sur la Parole, JEP, Atelier ESTER2 (2005)

    Google Scholar 

  9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (ICML) (2001)

    Google Scholar 

  10. Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 504–513. Association for Computational Linguistics, July 2010. http://www.aclweb.org/anthology/P10-1052

  11. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009)

    Article  Google Scholar 

  12. Mann, G.S., McCallum, A.: Generalized expectation criteria for semi-supervised learning of conditional random fields. In: Proceedings of ACL-08: HLT, Colombus, Ohio, USA, pp. 870–878 (2008)

    Google Scholar 

  13. Miller, S., Guinness, J., Zamanian, A.: Name tagging with word clusters and discriminative training. In: Procedings of the Conference ACL (2004)

    Google Scholar 

  14. Olsson, F.: A literature survey of active machine learning in the context of natural language processing. Technical report. Swedish Institute of Computer Science, Swedish Institute of Computer Science (2009)

    Google Scholar 

  15. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  16. Pierce, D., Cardie, C.: Limitations of co-training for natural language learning from large datasets. In: Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing (EMNLP 2001), Pittsburgh, Pennsylvania, USA (2001)

    Google Scholar 

  17. Pranjal, A., Delip, R., Balaraman, R.: Part Of speech Tagging and Chunking with HMM and CRF. In: Proceedings of NLP Association of India (NLPAI) Machine Learning Contest (2006)

    Google Scholar 

  18. Raymond, C., Fayolle, J.: Reconnaissance robuste d’entités nommées sur de la parole transcrite automatiquement. In: Actes de la conférence Traitement Automatique des Langues Naturelles. Montréal, Canada (2010)

    Google Scholar 

  19. Salakhutdinov, R., Roweis, S., Ghahramani, Z.: Optimization with EM and Expectation-Conjugate-Gradient. In: Proceedings of the conference ICML (2003)

    Google Scholar 

  20. Schraudolph, N.N., Yu, J., Günter, S.: A stochastic quasi-Newton method for online convex optimization. In: Proceedings of 11th International Conference on Artificial Intelligence and Statistics. Workshop and Conference Proceedings, vol. 2, San Juan, Puerto Rico, pp. 436–443 (2007)

    Google Scholar 

  21. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1069–1078. ACL Press (2008)

    Google Scholar 

  22. Settles, B.: Active learning literature survey. Computer Sciences Technical report 1648, University of Wisconsin-Madison (2010)

    Google Scholar 

  23. Smith, N., Eisner, J.: Contrastive estimation: Training log-linear models on unlabeled data. In: Proceedings of ACL (2005)

    Google Scholar 

  24. Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task: language-independent named entity recognition. In: Proceedings of CoNLL-2002, Taipei, Taiwan, pp. 155–158 (2002)

    Google Scholar 

  25. Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the conll-2000 shared task: Chunking. In: Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E. (eds.) Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, pp. 127–132 (2000)

    Google Scholar 

  26. Wang, T., Li, J., Diao, Q., Wei Hu, Y.Z., Dulong, C.: Semantic event detection using conditional random fields. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006) (2006)

    Google Scholar 

  27. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. Springer, New York (2005). https://doi.org/10.1007/978-0-387-21736-9

    Book  Google Scholar 

  28. Zhou, H., Hastie, T.: Regularization and variable selection via the elastic net, pp. 301–320 (2005)

    Google Scholar 

Download references

Acknowledgments

This work was partly funded by a French government support granted to the CominLabs LabEx managed by the ANR in Investing for the Future program under reference ANR-10-LABX-07-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Claveau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Claveau, V., Kijak, E. (2018). Strategies to Select Examples for Active Learning with Conditional Random Fields. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2017. Lecture Notes in Computer Science(), vol 10761. Springer, Cham. https://doi.org/10.1007/978-3-319-77113-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77113-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77112-0

  • Online ISBN: 978-3-319-77113-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics