Abstract
Nowadays, many NLP problems are tackled as supervised machine learning tasks. Consequently, the cost of the expertise needed to annotate the examples is a widespread issue. Active learning offers a framework to that issue, allowing to control the annotation cost while maximizing the classifier performance, but it relies on the key step of choosing which example will be proposed to the expert. In this paper, we examine and propose such selection strategies in the specific case of Conditional Random Fields (CRF) which are largely used in NLP. On the one hand, we propose a simple method to correct a bias of some state-of-the-art selection techniques. On the other hand, we detail an original approach to select the examples, based on the respect of proportions in the datasets. These contributions are validated over a large range of experiments implying several datasets and tasks, including named entity recognition, chunking, phonetization, word sense disambiguation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abe, N., Mamitsuka, H.: Query learning strategies using boosting and bagging. In: Proceedings of the Fifteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc, Madison (1998)
Ando, R.K., Zhang, T.: A high-performance semi-supervised learning method for text chunking. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. ACL 2005, pp. 1–9. Association for Computational Linguistics, Stroudsburg (2005). https://doi.org/10.3115/1219840.1219841
Chen, S.: Performance prediction for exponential language models. In: Proceedings of Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 450–458, June 2009
Constant, M., Tellier, I., Duchier, D., Dupont, Y., Sigogne, A., Billot, S.: Intégrer des connaissances linguistiques dans un CRF: application à l’apprentissage d’un segmenteur-étiqueteur du français. In: Traitement Automatique du Langage Naturel (TALN’11), Montpellier, France (2011)
Edmonds, P., Cotton, S.: Senseval-2: Overview. In: Proceedings of SENSEVAL-2 Second International Workshop on Evaluating Word Sense Disambiguation Systems, pp. 1–5. Association for Computational Linguistics (2001). http://aclweb.org/anthology/S01-1001
Freitag, D.: Trained named entity recognition using distributional clusters. In: Proceedings of the Conference EMNLP (2004)
Garrette, D., Baldridge, J.: Learning a part-of-speech tagger from two hours of annotation, pp. 138–147, June 2013. http://www.cs.utexas.edu/users/ai-lab/?garrette:naacl13
Gravier, G., Bonastre, J.F., Geoffrois, E., Galliano, S., Tait, K.M., Choukri, K.: ESTER, une campagne d’évaluation des systèmes d’indexation automatique. In: Actes des Journées d’Étude sur la Parole, JEP, Atelier ESTER2 (2005)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning (ICML) (2001)
Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: Proceedings the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 504–513. Association for Computational Linguistics, July 2010. http://www.aclweb.org/anthology/P10-1052
Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009)
Mann, G.S., McCallum, A.: Generalized expectation criteria for semi-supervised learning of conditional random fields. In: Proceedings of ACL-08: HLT, Colombus, Ohio, USA, pp. 870–878 (2008)
Miller, S., Guinness, J., Zamanian, A.: Name tagging with word clusters and discriminative training. In: Procedings of the Conference ACL (2004)
Olsson, F.: A literature survey of active machine learning in the context of natural language processing. Technical report. Swedish Institute of Computer Science, Swedish Institute of Computer Science (2009)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)
Pierce, D., Cardie, C.: Limitations of co-training for natural language learning from large datasets. In: Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing (EMNLP 2001), Pittsburgh, Pennsylvania, USA (2001)
Pranjal, A., Delip, R., Balaraman, R.: Part Of speech Tagging and Chunking with HMM and CRF. In: Proceedings of NLP Association of India (NLPAI) Machine Learning Contest (2006)
Raymond, C., Fayolle, J.: Reconnaissance robuste d’entités nommées sur de la parole transcrite automatiquement. In: Actes de la conférence Traitement Automatique des Langues Naturelles. Montréal, Canada (2010)
Salakhutdinov, R., Roweis, S., Ghahramani, Z.: Optimization with EM and Expectation-Conjugate-Gradient. In: Proceedings of the conference ICML (2003)
Schraudolph, N.N., Yu, J., Günter, S.: A stochastic quasi-Newton method for online convex optimization. In: Proceedings of 11th International Conference on Artificial Intelligence and Statistics. Workshop and Conference Proceedings, vol. 2, San Juan, Puerto Rico, pp. 436–443 (2007)
Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1069–1078. ACL Press (2008)
Settles, B.: Active learning literature survey. Computer Sciences Technical report 1648, University of Wisconsin-Madison (2010)
Smith, N., Eisner, J.: Contrastive estimation: Training log-linear models on unlabeled data. In: Proceedings of ACL (2005)
Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task: language-independent named entity recognition. In: Proceedings of CoNLL-2002, Taipei, Taiwan, pp. 155–158 (2002)
Tjong Kim Sang, E.F., Buchholz, S.: Introduction to the conll-2000 shared task: Chunking. In: Cardie, C., Daelemans, W., Nedellec, C., Tjong Kim Sang, E. (eds.) Proceedings of CoNLL-2000 and LLL-2000, Lisbon, Portugal, pp. 127–132 (2000)
Wang, T., Li, J., Diao, Q., Wei Hu, Y.Z., Dulong, C.: Semantic event detection using conditional random fields. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006) (2006)
Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. Springer, New York (2005). https://doi.org/10.1007/978-0-387-21736-9
Zhou, H., Hastie, T.: Regularization and variable selection via the elastic net, pp. 301–320 (2005)
Acknowledgments
This work was partly funded by a French government support granted to the CominLabs LabEx managed by the ANR in Investing for the Future program under reference ANR-10-LABX-07-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Claveau, V., Kijak, E. (2018). Strategies to Select Examples for Active Learning with Conditional Random Fields. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2017. Lecture Notes in Computer Science(), vol 10761. Springer, Cham. https://doi.org/10.1007/978-3-319-77113-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-77113-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77112-0
Online ISBN: 978-3-319-77113-7
eBook Packages: Computer ScienceComputer Science (R0)