Skip to main content

Mechanical Design and Control of Compliant Leg for a Quadruped Robot

  • Conference paper
  • First Online:
Automation 2018 (AUTOMATION 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 743))

Included in the following conference series:

Abstract

In this paper, we propose a new mammal-like mechanical design of the compliant robotic leg. We propose the application of elastic components to reduce the mechanical impact during landing phase and protect the gearboxes of the servomotors. We also use the elastic tendon which stores the energy in springs. The stored energy is then released at the beginning of the flight phase to increase the height of the jump. We propose and verify the dynamic model of the leg. Finally, in the series of experiments, we show the mechanical properties of the leg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ates, S., Sluiter, V.I., Lammertse, P., Stienen, A.H.A.: ServoSEA concept: cheap, miniature series-elastic actuators for orthotic, prosthetic and robotic hands. In: International Conference on Biomedical Robotics and Biomechatronics, pp. 752–757 (2014)

    Google Scholar 

  2. Belter, D., Walas, K.: A compact walking robot – flexible research and development platform. In: Szewczyk, R., et al. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques, vol. 267, pp. 343–352 (2014)

    Google Scholar 

  3. Carpino, G., Accoto, D., Sergi, F., Tagliamonte, N.L., Guglielmelli, E.: A novel compact torsional spring for series elastic actuators for assistive wearable robots. J. Mech. Des. 134(12), 121002 (2012)

    Article  Google Scholar 

  4. Bar-Cohen, Y.: Biomimetics: Biologically Inspired Technologies. CRC Press, Boca Raton (2006)

    Google Scholar 

  5. Hutter, M., Remy, C.D., Hoepflinger, M.H., Siegwart, R.: High compliant series elastic actuation for the robotic leg StarlETH. In: International Conference on Climbing and Walking Robots (CLAWAR), pp. 507–514 (2011)

    Google Scholar 

  6. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M.H., Remy, C.D., Siegwart, R.: StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: International Conference on Climbing and Walking Robots (CLAWAR), pp. 483–490 (2012)

    Google Scholar 

  7. Hutter, M., Gehring, C., Höpflinger, M.A., Blösch, M., Siegwart, R.: Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6), 1427–1440 (2016)

    Article  Google Scholar 

  8. Iida, F., Gomez, G., Pfeifer, R.: Exploiting body dynamics for controlling a running quadruped robot. In: Proceedings International Conference on Advanced Robotics, pp. 229–235 (2005)

    Google Scholar 

  9. Hurst, J.W., Rizzi, A., Hobbelen, D.: Series elastic actuation: potential and pitfalls. In: International Conference on Climbing and Walking Robots (2004)

    Google Scholar 

  10. Lagoda, C., Schouten, A.C., Stienen, A.H.A., Hekman, E.E.G., van der Kooij, H.: Design of an electric series elastic actuated joint for robotic gait rehabilitation training. In: International Conference on Biomedical Robotics and Biomechatronics, pp. 21–26 (2010)

    Google Scholar 

  11. Raibert, M.H., Brown, H.B., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. Int. J. Robot. Res. 3, 75–92 (1984)

    Article  Google Scholar 

  12. Shkolnik, A., Levashov, M., Manchester, I.R., Tedrake, R.: Bounding on rough terrain with the LittleDog robot. Int. J. Robot. Res. 30(2), 192–215 (2011)

    Article  Google Scholar 

  13. Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., Ijspeert, A.J.: Towards dynamic trot gait locomotion: design, control, and experiments with Cheetahcub, a compliant quadruped robot. Int. J. Robot. Res. 32(8), 933–951 (2013)

    Article  Google Scholar 

  14. Spröwitz, A., Ajallooeian, M., Tuleu, A., Ijspeert, A.J.: Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs. Front. Comput. Neurosci. 8(27), 1–13 (2014)

    Google Scholar 

  15. Tsagarakis, N., Laffranchi, M., Vanderborght, B., Caldwell, D.: A compact soft actuator unit for small scale human friendly robots. In: IEEE International Conference on Robotics and Automation, pp. 4356–4362 (2009)

    Google Scholar 

  16. Wyffels, F., D’Haene, M., Waegeman, T., Caluwaerts, K., Nunes, C., Schrauwen, B.: Realization of a passive compliant robot dog. In: Proceedings of the International Conference on Biomedical Robotics and Biomechatronics, pp. 882–886 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Belter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zieliński, M., Belter, D. (2018). Mechanical Design and Control of Compliant Leg for a Quadruped Robot. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2018. AUTOMATION 2018. Advances in Intelligent Systems and Computing, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-77179-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77179-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77178-6

  • Online ISBN: 978-3-319-77179-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics