Skip to main content

Constraint Satisfaction Problems: Complexity and Algorithms

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10792))

Abstract

In this paper we briefly survey the history of the Dichotomy Conjecture for the Constraint Satisfaction problem, that was posed 25 years ago by Feder and Vardi. We outline some of the approaches to this conjecture, and then describe an algorithm that yields an answer to the conjecture.

This research was supported by an NSERC Discovery grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, due to the result of [67] this reduction can be made log-space.

References

  1. Barto, L.: The dichotomy for conservative constraint satisfaction problems revisited. In: LICS, pp. 301–310 (2011)

    Google Scholar 

  2. Barto, L.: The collapse of the bounded width hierarchy. J. Logic Comput. 26(3), 923–943 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barto, L., Kozik, M.: Absorbing subalgebras, cyclic terms, and the constraint satisfaction problem. Log. Methods Comput. Sci. 8(1), 1–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency methods. J. ACM 61(1), 3:1–3:19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barto, L., Kozik, M.: Robustly solvable constraint satisfaction problems. SIAM J. Comput. 45(4), 1646–1669 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barto, L., Kozik, M.: Absorption in universal algebra and CSP. In: The Constraint Satisfaction Problem: Complexity and Approximability, pp. 45–77 (2017)

    Google Scholar 

  7. Barto, L., Krokhin, A.A., Willard, R.: Polymorphisms, and how to use them. In: The Constraint Satisfaction Problem: Complexity and Approximability, pp. 1–44 (2017)

    Google Scholar 

  8. Barto, L., Pinsker, M., Opršal, J.: The wonderland of reflections. Israel J. Math. (2018, to appear)

    Google Scholar 

  9. Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with few subalgebras of powers. Trans. Amer. Math. Soc. 362(3), 1445–1473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bodnarchuk, V., Kaluzhnin, L., Kotov, V., Romov, B.: Galois theory for post algebras. I. Kibernetika 3, 1–10 (1969)

    MathSciNet  Google Scholar 

  11. Börner, F., Bulatov, A.A., Chen, H., Jeavons, P., Krokhin, A.A.: The complexity of constraint satisfaction games and QCSP. Inf. Comput. 207(9), 923–944 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: FOCS, pp. 649–658 (2002)

    Google Scholar 

  13. Bulatov, A.A.: Tractable conservative constraint satisfaction problems. In: LICS, pp. 321–330 (2003)

    Google Scholar 

  14. Bulatov, A.A.: A graph of a relational structure and constraint satisfaction problems. In: LICS, pp. 448–457 (2004)

    Google Scholar 

  15. Bulatov, A.A.: H-coloring dichotomy revisited. Theor. Comp. Sci. 349(1), 31–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log. 12(4), 24 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. J. ACM 60(5), 34:1–34:41 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Bulatov, A.A.: Conservative constraint satisfaction re-revisited. J. Comput. Syst. Sci. 82(2), 347–356 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bulatov, A.A.: Graphs of finite algebras, edges, and connectivity. CoRR. abs/1601.07403 (2016)

    Google Scholar 

  21. Bulatov, A.A.: Graphs of relational structures: restricted types. In: LICS, pp. 642–651 (2016)

    Google Scholar 

  22. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. CoRR. abs/1703.03021 (2017)

    Google Scholar 

  23. Bulatov, A.A.: A dichotomy theorem for nonuniform CSPs. In: FOCS, pp. 319–330 (2017)

    Google Scholar 

  24. Bulatov, A.A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SIAM J. Comput. 36(1), 16–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bulatov, A.A., Krokhin, A., Larose, B.: Dualities for constraint satisfaction problems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar]. LNCS, vol. 5250, pp. 93–124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92800-3_5

    Google Scholar 

  27. Bulatov, A.A., Valeriote, M.A.: Recent results on the algebraic approach to the CSP. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar]. LNCS, vol. 5250, pp. 68–92. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92800-3_4

    Google Scholar 

  28. Cai, J., Chen, X.: Complexity of counting CSP with complex weights. In: STOC, pp. 909–920 (2012)

    Google Scholar 

  29. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: STOC, pp. 77–90 (1977)

    Google Scholar 

  30. Cooper, M.C., Zivny, S.: Hybrid tractable classes of constraint problems. In: The Constraint Satisfaction Problem: Complexity and Approximability, pp. 113–135 (2017)

    Google Scholar 

  31. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM (2001)

    Google Scholar 

  32. Dalmau, V.: Generalized majority-minority operations are tractable. Log. Methods Comput. Sci. 2(4), 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dalmau, V., Kozik, M., Krokhin, A.A., Makarychev, K., Makarychev, Y., Oprsal, J.: Robust algorithms with polynomial loss for near-unanimity CSPs. In: SODA, pp. 340–357 (2017)

    Google Scholar 

  34. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, Burlington (2003)

    MATH  Google Scholar 

  35. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3–4), 260–289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Feder, T., Vardi, M.: Monotone monadic SNP and constraint satisfaction. In: STOC, pp. 612–622 (1993)

    Google Scholar 

  37. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory. SIAM J. Comput. 28, 57–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math. 16(3), 449–478 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Feder, T., Hell, P., Tucker-Nally, K.: Digraph matrix partitions and trigraph homomorphisms. Discr. Appl. Math. 154(17), 2458–2469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49(6), 716–752 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Freese, R., McKenzie, R.: Commutator Theory for Congruence Modular Varieties. London Mathematical Society Lecture Note Series, vol. 125. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  42. Geiger, D.: Closed systems of function and predicates. Pacific J. Math. 27(1), 95–100 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Grätzer, G.: Universal Algebra, 2nd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-77487-9

    Book  MATH  Google Scholar 

  46. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1:1–1:24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans. Algorithms 11(1), 4:1–4:20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications, vol. 28. Oxford University Press, Oxford (2004)

    Google Scholar 

  49. Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Comb. Theory Ser. B 48, 92–110 (1990)

    Article  MATH  Google Scholar 

  50. Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics, vol. 76. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  51. Idziak, P.M., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput. 39(7), 3023–3037 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jeavons, P., Cohen, D.A., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. Artif. Intell. 101(1–2), 251–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Jerrum, M.: Counting constraint satisfaction problems. In: The Constraint Satisfaction Problem: Complexity and Approximability, pp. 205–231 (2017)

    Google Scholar 

  55. Klíma, O., Tesson, P., Thérien, D.: Dichotomies in the complexity of solving systems of equations over finite semigroups. Theory Comput. Syst. 40(3), 263–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kolmogorov, V., Krokhin, A.A., Rolínek, M.: The complexity of general-valued CSPs. SIAM J. Comput. 46(3), 1087–1110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Krokhin, A.A., Zivny, S.: The complexity of valued CSPs. In: The Constraint Satisfaction Problem: Complexity and Approximability, pp. 233–266 (2017)

    Google Scholar 

  58. Larose, B., Zádori, L.: Taylor terms, constraint satisfaction and the complexity of polynomial equations over finite algebras. IJAC 16(3), 563–582 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Mackworth, A.: Consistency in networks of relations. Artif. Intell. 8, 99–118 (1977)

    Article  MATH  Google Scholar 

  60. Kozik, M., Krokhin, A., Valeriote, M., Willard, R.: Characterizations of several Maltsev conditions. Algebra Univers. 73(3–4), 205–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Markovic, P.: The complexity of CSPs on a 4-element set. Oral Communication (2011)

    Google Scholar 

  62. Maróti, M.: Tree on top of Malcev (2011). http://www.math.u-szeged.hu/~mmaroti/pdf/200x%20Tree%20on%20top%20of%20Maltsev.pdf

  63. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations. Algebra Univers. 59(3–4), 463–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM 60(6), 42:1–42:51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  65. Post, E.: The Two-Valued Iterative Systems of Mathematical Logic. Annals Mathematical Studies, vol. 5. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  66. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: STOC, pp. 245–254 (2008)

    Google Scholar 

  67. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Schaefer, T.: The complexity of satisfiability problems. In: STOC, pp. 216–226 (1978)

    Google Scholar 

  69. Thapper, J., Zivny, S.: The complexity of finite-valued CSPs. J. ACM 63(4), 37:1–37:33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhuk, D.: On CSP dichotomy conjecture. In: Arbeitstagung Allgemeine Algebra, AAA 1992, p. 32 (2016)

    Google Scholar 

  71. Zhuk, D.: The proof of CSP dichotomy conjecture for 5-element domain. In: Arbeitstagung Allgemeine Algebra AAA 1991 (2016)

    Google Scholar 

  72. Zhuk, D.: A proof of CSP dichotomy conjecture. In: FOCS, pp. 331–342 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei A. Bulatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulatov, A.A. (2018). Constraint Satisfaction Problems: Complexity and Algorithms. In: Klein, S., Martín-Vide, C., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2018. Lecture Notes in Computer Science(), vol 10792. Springer, Cham. https://doi.org/10.1007/978-3-319-77313-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77313-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77312-4

  • Online ISBN: 978-3-319-77313-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics