Skip to main content

Sparsity-Promoting Adaptive Coding with Robust Empirical Mode Decomposition for Image Restoration

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

Abstract

In this paper, a novel data-driven sparse coding framework is proposed to solve image restoration problem based on a robust empirical mode decomposition. This powerful analysis tool for multi-dimensional signals can adaptively decompose images into multiscale oscillating components according to intrinsic modes of data self. This treatment can obtain very effective sparse representation, and meanwhile generates a dictionary at multiple geometric scales and frequency bands. The distribution of sparse coefficients is reliably approximated by generalized Gaussian model. Moreover, a sparse approximation of blur kernel is also obtained as a strong prior. Finally, latent image and blur kernel can be jointly estimated via alternating optimization scheme. The extensive experiments show that our approach can effectively and efficiently recover the sharpness of local structures and suppress undesirable artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 155.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Figueiredo, M., Bioucas-Dias, J., Nowak, R.: Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans. Image Process. 16(12), 2980–2991 (2007)

    Article  MathSciNet  Google Scholar 

  2. Dong, W., Shi, G., Ma, Y., Li, X.: Image restoration via simultaneous sparse coding: where structured sparsity meets Gaussian scale mixture. Int. J. Comput. Vis. 114(2), 217–232 (2015)

    Article  MathSciNet  Google Scholar 

  3. Elad, M., Figueiredo, M., Ma, Y.: On the role of sparse and redundant representations in image processing. Proc. IEEE 98, 972–982 (2010)

    Article  Google Scholar 

  4. Levin, A., Weiss, Y., Durand, F., Freeman, T.: Efficient marginal likelihood optimization in blind deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (2011)

    Google Scholar 

  5. Papyan, V., Elad, M.: Multi-scale patch-based image restoration. IEEE Trans. Image Process. 25(1), 249–261 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ram, I., Cohen, I., Elad, M.: Patch-ordering-based wavelet frame and its use in inverse problems. IEEE Trans. Image Process. 23(7), 2779–2792 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cai, J., Ji, H., Liu, C., Shen, Z.: High-quality curvelet-based motion deblurring from an image pair. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1566–1573 (2009)

    Google Scholar 

  8. Cai, J., Ji, H., Liu, C., Shen, Z.: Framelet-based blind motion deblurring from a single image. IEEE Trans. Image Process. 21(2), 562–572 (2012)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Y., Hirakawa, K.: Blur processing using double discrete wavelet transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1091–1098 (2013)

    Google Scholar 

  10. Quan, Y., Ji, H., Shen, Z.: Data-driven multi-scale non-local wavelet frame construction and image recovery. J. Sci. Comput. 63(2), 307–329 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, R., Jia, Z., Xie, X., Gao, W.: A structure-preserving image restoration method with high-level ensemble constraints. In: Proceedings of the IEEE Conference on Visual Communications and Image Processing (VCIP), pp. 1–4 (2016)

    Google Scholar 

  12. Huang, N., Shen, Z., Long, S., et al.: The empirical model decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. A 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  13. Hou, T., Shi, Z.: Data-driven time-frequency analysis. Appl. Comput. Harmon. Anal. 35(2), 284–308 (2013)

    Article  MathSciNet  Google Scholar 

  14. Pattichis, M., Bovik, A.: Analyzing image structure by multidimensional frequency modulation. IEEE Trans. Patt. Anal. Mach. Intell. 29(5), 753–766 (2007)

    Article  Google Scholar 

  15. Wu, Z., Huang, N., Chen, X.: The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 1(3), 339–372 (2009)

    Article  MathSciNet  Google Scholar 

  16. Bhuiyan, S., Atton-Okine, N., Barner, K., Ayenu-Prah, A., Adhami, R.: Bidimensional empirical mode decomposition using various interpolation techniques. Adv. Adapt. Data Anal. 1(2), 309–338 (2009)

    Article  MathSciNet  Google Scholar 

  17. Daubechies, I., Lu, J., Wu, H.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MathSciNet  Google Scholar 

  18. Diop, E., Alexandre, R., Moisan, L.: Intrinsic nonlinear multiscale image decomposition: a 2D empirical mode decomposition-like tool. Comput. Vis. Image Und. 116(1), 102–119 (2012)

    Article  Google Scholar 

  19. Gilles, J., Tran, G., Osher, S.: 2D empirical transform. wavelets, ridgelets, and curvelets revisited. SIAM J. Imaging Sci. 7(1), 157–186 (2014)

    Article  MathSciNet  Google Scholar 

  20. Hu, X., Peng, S., Hwang, W.: EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals. IEEE Trans. Signal Process. 60(3), 1075–1086 (2012)

    Article  MathSciNet  Google Scholar 

  21. Park, M., Kim, D., Oh, H.: Quantile-based empirical mode decomposition: an efficient way to decompose noisy signals. IEEE Trans. Instrum. Meas. 64(7), 1802–1813 (2015)

    Article  Google Scholar 

  22. Oberlin, T., Meignen, S., Perrier, V.: An alternative formulation for the empirical mode decomposition. IEEE Trans. Signal Process. 60(5), 2236–2246 (2012)

    Article  MathSciNet  Google Scholar 

  23. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. 28(5), 1472–1479 (2009)

    Article  Google Scholar 

  24. Sonogashira, M., Funatomi, T., Liyama, M., Minoh, M.: Variational Bayesian approach to multiframe image restoration. IEEE Trans. Image Process. 26(5), 2163–2178 (2017)

    Article  Google Scholar 

  25. Zhong, L., Cho, S., Metaxas, D., Paris, S., Wang, J.: Handling noise in single image deblurring using directional filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 612–619 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Jia, H., Xie, X., Wen, G. (2018). Sparsity-Promoting Adaptive Coding with Robust Empirical Mode Decomposition for Image Restoration. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics