Abstract
In this paper, we present a parallax-robust hexahedral panoramic video stitching method. An efficient three-stage stitching procedure is proposed. In the preprocessing stage, layered feature points matching strategy extracts feature matches lying in different depth layers. In the rough alignment stage, based on the first layer of feature matches, global projective warping estimates and refines camera parameters by considering the constraints among all cameras to avoid accumulated errors. With camera parameters, image pixels are roughly mapped onto a spherical surface. In the refined alignment stage, based on multiple layers of feature matches, layered content-preserving warping further aligns abundant feature pairs exploited from multiple depth layers, so as to alleviate ghosting caused by large parallax. Experimental results show that our method can effectively stitch panoramic video without noticeable parallax errors.
S. Guo—Thanks to National Natural Science Foundation of China 61672063, 61370115, China 863 project of 2015AA015905, Shenzhen Peacock Plan, Shenzhen Research Projects of JCYJ20160506172227337 and GGFW2017041215130858, and Guangdong Province Projects of 2014B010117007 and 2014B090910001 for funding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, R., Gallup, D., Barron, J.T., Kontkanen, J., Snavely, N., Hernández, C., Agarwal, S., Seitz, S.M.: Jump: virtual reality video. ACM Trans. Graph. 35(6), 198 (2016)
Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)
Gao, J., Kim, S.J., Brown, M.S.: Constructing image panoramas using dual-homography warping. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–56. IEEE (2011)
He, B., Yu, S.: Parallax-robust surveillance video stitching. Sensors 16(1), 7 (2015)
Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. (TOG) 24, 1134–1141 (2005)
Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. (ToG) 22, 277–286 (2003)
Rufli, M., Scaramuzza, D., Siegwart, R.: Automatic detection of checkerboards on blurred and distorted images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3121–3126. IEEE (2008)
Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends® Comput. Graph. Vis. 2(1), 1–104 (2006)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment —a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21
Zaragoza, J., Chin, T.J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2339–2346 (2013)
Zhang, F., Liu, F.: Parallax-tolerant image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3269 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Guo, S., Wang, R., Jiang, X., Wang, Z., Gao, W. (2018). Parallax-Robust Hexahedral Panoramic Video Stitching. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-77380-3_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77379-7
Online ISBN: 978-3-319-77380-3
eBook Packages: Computer ScienceComputer Science (R0)