Skip to main content

Parallax-Robust Hexahedral Panoramic Video Stitching

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

  • 2895 Accesses

Abstract

In this paper, we present a parallax-robust hexahedral panoramic video stitching method. An efficient three-stage stitching procedure is proposed. In the preprocessing stage, layered feature points matching strategy extracts feature matches lying in different depth layers. In the rough alignment stage, based on the first layer of feature matches, global projective warping estimates and refines camera parameters by considering the constraints among all cameras to avoid accumulated errors. With camera parameters, image pixels are roughly mapped onto a spherical surface. In the refined alignment stage, based on multiple layers of feature matches, layered content-preserving warping further aligns abundant feature pairs exploited from multiple depth layers, so as to alleviate ghosting caused by large parallax. Experimental results show that our method can effectively stitch panoramic video without noticeable parallax errors.

S. Guo—Thanks to National Natural Science Foundation of China 61672063, 61370115, China 863 project of 2015AA015905, Shenzhen Peacock Plan, Shenzhen Research Projects of JCYJ20160506172227337 and GGFW2017041215130858, and Guangdong Province Projects of 2014B010117007 and 2014B090910001 for funding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://matthewalunbrown.com/autostitch/autostitch.html.

  2. 2.

    http://www.kolor.com.

  3. 3.

    https://github.com/facebook/Surround360.

  4. 4.

    http://cs.adelaide.edu.au/~tjchin/apap/#Datasets.

References

  1. Anderson, R., Gallup, D., Barron, J.T., Kontkanen, J., Snavely, N., Hernández, C., Agarwal, S., Seitz, S.M.: Jump: virtual reality video. ACM Trans. Graph. 35(6), 198 (2016)

    Article  Google Scholar 

  2. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)

    Article  Google Scholar 

  3. Gao, J., Kim, S.J., Brown, M.S.: Constructing image panoramas using dual-homography warping. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–56. IEEE (2011)

    Google Scholar 

  4. He, B., Yu, S.: Parallax-robust surveillance video stitching. Sensors 16(1), 7 (2015)

    Article  MathSciNet  Google Scholar 

  5. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. (TOG) 24, 1134–1141 (2005)

    Article  Google Scholar 

  6. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. (ToG) 22, 277–286 (2003)

    Article  Google Scholar 

  7. Rufli, M., Scaramuzza, D., Siegwart, R.: Automatic detection of checkerboards on blurred and distorted images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3121–3126. IEEE (2008)

    Google Scholar 

  8. Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends® Comput. Graph. Vis. 2(1), 1–104 (2006)

    Article  MathSciNet  Google Scholar 

  9. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment —a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  10. Zaragoza, J., Chin, T.J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2339–2346 (2013)

    Google Scholar 

  11. Zhang, F., Liu, F.: Parallax-tolerant image stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3269 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronggang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, S., Wang, R., Jiang, X., Wang, Z., Gao, W. (2018). Parallax-Robust Hexahedral Panoramic Video Stitching. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics