Skip to main content

Mini Neural Networks for Effective and Efficient Mobile Album Organization

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10735))

Included in the following conference series:

  • 2765 Accesses

Abstract

In this paper, we present an auto mobile album organization system, which can automatically classify daily photos in mobile devices into six daily categories, e.g., Baby, Food, Party, Scenery, Selfie, and Sport. Recently, deep convolutional neural networks have been used to build powerful classifiers by learning high-level representations of images. However, such models are limited to be implemented in the mobile album organization system due to the computational complexity of these networks with millions of parameters. To address these problems, we propose Mini Neural Networks (MiniNN) customized for mobile devices to improve computational efficiency of the album organization system, which is not sacrificed for performance a lot. We train the MiniNN model on the collected datasets as the classifier. Users can choose photos of any size as the input to the system, which will return the predicted tags. Experimental results show that the proposed MiniNN have an advantage over the CaffeNet with comparable classification accuracy but high computational efficiency. It can help us to organize daily photos in the mobile devices effectively and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 155.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Farabet, C., Couprie, C., Najman, L., Lecun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, vol. 25, pp. 2852–2860 (2012)

    Google Scholar 

  4. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. Eprint Arxiv (2013)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation, pp. 580–587 (2014)

    Google Scholar 

  6. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition, pp. 512–519 (2014)

    Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Computer Science (2014)

    Google Scholar 

  8. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions, pp. 1–9 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2015)

    Google Scholar 

  10. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  11. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  12. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  13. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  14. Shu, X., Tang, J., Qi, G.-J., Li, Z., Jiang, Y.-G., Yan, S.: Image classification with tailored fine-grained dictionaries. IEEE Trans. Circuits Syst. Video Technol. 28, 454–467 (2016)

    Article  Google Scholar 

  15. Shu, X., Tang, J., Lai, H., Liu, L., Yan, S.: Personalized age progression with aging dictionary, pp. 3970–3978 (2015)

    Google Scholar 

  16. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks (2016)

    Google Scholar 

  17. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 5(4), 455 (1992)

    Article  MathSciNet  Google Scholar 

  18. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep neural networks. In: Interspeech, pp. 437–440 (2011)

    Google Scholar 

  19. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5MB model size (2016)

    Google Scholar 

  20. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.: Caffe: convolutional architecture for fast feature embedding. Eprint Arxiv, pp. 675–678 (2014)

    Google Scholar 

  21. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255 (2009)

    Google Scholar 

  22. Tang, J., Shu, X., Li, Z., Qi, G.J., Wang, J.: Generalized deep transfer networks for knowledge propagation in heterogeneous domains. ACM Trans. Multimed. Comput. Commun. Appl. 12(4s), 68 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the 973 Program (Project No. 2014CB347600), the National Nature Science Foundation of China (Grant No. 61672285 and 61702265) and the Natural Science Foundation of Jiangsu Province (Grant No. BK 20170856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Fa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fa, L., Zhang, L., Shu, X., Song, Y., Tang, J. (2018). Mini Neural Networks for Effective and Efficient Mobile Album Organization. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10735. Springer, Cham. https://doi.org/10.1007/978-3-319-77380-3_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77380-3_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77379-7

  • Online ISBN: 978-3-319-77380-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics