Skip to main content

Human Action Recognition in Videos of Realistic Scenes Based on Multi-scale CNN Feature

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing – PCM 2017 (PCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10736))

Included in the following conference series:

Abstract

In this paper, we develop a novel method to design a robust feature representation based on deep convolutional features and Latent Dirichlet Allocation (LDA) model for human action recognition. Compared to traditional CNN features which explore the outputs from the fully connected layers in CNN, we show that a low dimension feature representation generated on the deep convolutional layers is more discriminative. In addition, based on the convolutional feature maps, we use a multi-scale pooling strategy to better handle the objects with different scales and deformations. Moreover, we adopt LDA to explore the semantic relationship in video sequences and generate a topic histogram to represent a video, since LDA puts more emphasis on the content coherence than mere spatial contiguity. Extensive experimental results on two challenging datasets show that the proposed approach outperforms or is competitive with state-of-the-art methods for the application of human action recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, P., Wang, J., She, M., et al.: Human action recognition based on 3D SIFT and LDA model. In: Robotic Intelligence in Informationally Structured Space, pp. 12–17. IEEE (2011)

    Google Scholar 

  2. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79(3), 299–318 (2008)

    Article  Google Scholar 

  3. Wang, H., et al.: Evaluation of local spatio-temporal features for action recognition. In: British Machine Vision Conference (BMVC 2009), London, 7–10 September 2009. Proceedings DBLP (2009)

    Google Scholar 

  4. Le, Q.V., Zou, W.Y., Yeung, S.Y., et al.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: Computer Vision and Pattern Recognition, pp. 3361–3368. IEEE Xplore (2011)

    Google Scholar 

  5. Rodriguez, M.D, Ahmed, J., Shah, M.: Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos “in the wild”. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1996–2003. DBLP (2009)

    Google Scholar 

  7. Hasan, M., Roy-Chowdhury, A.K.: Incremental activity modeling and recognition in streaming videos. In: Computer Vision and Pattern Recognition, pp. 796–803. IEEE (2014)

    Google Scholar 

  8. Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In: Computer Vision and Pattern Recognition, pp. 2046–2053. IEEE (2010)

    Google Scholar 

  9. Laptev, L.: Space-time interest points. In: International Conference on Computer Vision, vol. 1, pp. 432–439. IEEE Xplore (2003)

    Google Scholar 

  10. Dollar, P., Rabaud, V., Cottrell, G., et al.: Behavior recognition via sparse spatio-temporal features. In: Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72. IEEE (2005)

    Google Scholar 

  11. Guo, Y., Lao, S., Liu, Y., Bai, L., Liu, S., Lew, M.S.: Convolutional neural networks features: principal pyramidal convolution. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9314, pp. 245–253. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24075-6_24

    Chapter  Google Scholar 

  12. Yosinski, J., Clune, J., Bengio, Y., et al.: How transferable are features in deep neural networks? Eprint Arxiv arXiv:1411.1792, vol. 27, pp. 3320–3328 (2014)

  13. Hofmann, T.: Probabilistic latent semantic indexing. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM (1999)

    Google Scholar 

  14. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  15. Chong, W., Blei, D., Li, F.F.: Simultaneous image classification and annotation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1903–1910. IEEE (2009)

    Google Scholar 

  16. Cao, L., Li, F.F.: Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: IEEE International Conference on Computer Vision, pp. 1–8. DBLP (2007)

    Google Scholar 

  17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  19. He, K., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems Curran Associates Inc., pp. 1097–1105 (2012)

    Google Scholar 

  21. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions, pp. 1–9 (2014)

    Google Scholar 

  22. He, K., et al.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2015)

    Google Scholar 

  23. Souly, N., Shah, M.: Visual saliency detection using group lasso regularization in videos of natural scenes. Int. J. Comput. Vis. 117(1), 93–110 (2016)

    Article  MathSciNet  Google Scholar 

  24. Wang, H., Klaser, A., Schmid, C., et al.: Action recognition by dense trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3169–3176. IEEE Computer Society (2011)

    Google Scholar 

  25. Ikizler-Cinbis, N., Sclaroff, S.: Object, scene and actions: combining multiple features for human action recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 494–507. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Pu, N., Qian, L., Wu, S., Xiao, G. (2018). Human Action Recognition in Videos of Realistic Scenes Based on Multi-scale CNN Feature. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, X. (eds) Advances in Multimedia Information Processing – PCM 2017. PCM 2017. Lecture Notes in Computer Science(), vol 10736. Springer, Cham. https://doi.org/10.1007/978-3-319-77383-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77383-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77382-7

  • Online ISBN: 978-3-319-77383-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics