DJSB: Dynamic Job Scheduling Benchmark

Victor Lopez', Ana Jokanovic!, Marco D’Amico!, Marta Garcia®,

Raul Sirvent!, and Julita Corbalan?

! Barcelona Supercomputing Center, Barcelona, Spain
2 Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract. High-performance computing (HPC) systems are very big
and powerful systems, with the main goal of achieving maximum perfor-
mance of parallel jobs. Many dynamic factors influence the performance
which makes this goal a non-trivial task. According to our knowledge,
there is no standard tool to automatize performance evaluation through
comparing different configurations and helping system administrators to
select the best scheduling policy or the best job scheduler. This paper
presents the Dynamic Job Scheduler Benchmark (DJSB). It is a config-
urable tool that compares performance metrics for different scenarios.
DJSB receives a workload description and some general arguments such
as job submission commands and generates performance metrics and per-
formance plots. To test and present DJSB, we have compared three differ-
ent scenarios with dynamic resource management strategies using DJSB
experiment-driven tool. Results show that just changing some DJSB ar-
guments we can set up and execute quite different experiments, making
easy the comparison. In this particular case, a cooperative-dynamic re-
source management is evaluated compared with other resource manage-
ment approaches.

Keywords: dynamic resource management, job scheduling, benchmark,
performance evaluation

1 Introduction and Motivation

HPC systems are big systems with very powerful computational and communi-
cation capacities, specially designed for parallel applications with high require-
ments in terms of computation and inter-process communication. This specific
hardware makes HPC systems very expensive and complex, resulting in the
necessity of expert software systems, i.e., job schedulers to deal with the job
scheduling and resource allocation. Additionally, system administrators config-
ure and control system behaviour. An example of job schedulers used in the top
five HPC systems are SLURM [20], PBS [14], or Cobalt [9].

The complexity of HPC systems has grown with their size, as well as with the
jobs complexity. They are composed of nodes with many cores and GPUs. The
resources are shared among jobs at different levels: memory, network, etc. being
hierarchically organized. As a consequence, parallel jobs have also evolved to
hybrid programming models to fit this configuration. Most of the jobs executed

The final publication is available at Springer via https://link.springer.com/chapter/10.1007/978-3-319-77398-8_10

2 DJSB: Dynamic Job Scheduling Benchmark

in these systems are programmed in pure MPI [4], OpenMP [8] or OmpSs [6],
or hybrid models such as MPI4+OmpSS.

Job schedulers allow system administrators to configure the machine with
different partitions, policies, policy arguments, etc. Users can also configure their
job submissions with as many requirements and details as needed for a ”perfect”
job execution. Job schedulers try to execute jobs as soon as possible based on
the job requirements, priorities (e.g., arrival order), and resource availability.
If resource requirements are very specific to improve execution time, that may
increase wait time, resulting in a poor global performance, i.e., slowdown. If
job requirements are flexible, jobs can start before but their execution time can
suffer variations because of sharing of resources such as network bandwidth, for
example.

Traditional approach in HPC systems is to statically allocate resources to
jobs once they are started, i.e., they are not preempted and they own these
resources until the end of their execution. This approach simplifies job manage-
ment but reduces potential performance improvements that can be achieved with
dynamic approaches. The deployment and evaluation of dynamic job scheduling
strategies is complicated and it is a normal approach for system administrators
when upgrading their systems, or starting new HPC centers, to select well known
static approaches rather than evaluating different dynamic strategies and select-
ing the one with best performance. This evaluation must be based on center
characteristics and specific workload.

The aim of this paper is to present the Dynamic Job Scheduler Benchmark
(DJSB). DJSB is a tool that evaluates the capacity of system to react to the
resource requirements of the jobs that may overload the system, which we will
refer to as the dynamicity of the system.

DJSB can be configured to deal with different job schedulers, as well as,
interactive sessions that do not use job schedulers, different job submission fre-
quencies and different application arguments such as number of tasks. Early
prototype of the benchmark has already proven its usefulness and has been used
by other research groups [7].

DJSB actual workload is based on a use case defined as a reference case in
the Human Brain Project [2]. The use case consists in a situation where there
is a big and long running job using all the resources and a new, small and short
job that arrives to the system requesting a percentage of these resources during
a short period of time. In this use case, the second job does a partial analysis of
results reported by the simulation. Therefore, we will refer to the long running
job as the simulation and to the new job as the analytics.

To illustrate the potential of DJSB, we have performed three different sets of
experiments, each one including many variations concerning system size, applica-
tion size, number of applications, memory requirements, etc. We have compared
a stop&continue approach with oversubscription and a cooperative-dynamic re-
source management.

To evaluate the benefits of such a dynamic environment we will present tra-
ditional performance metric slowdown but also a new synthesized metric that

DJSB: Dynamic Job Scheduling Benchmark 3

combines slowdown of both jobs and tries to summarize in a single value the
dynamicity of a system. This metric is presented in Sections 2 and 4.

The rest of the paper is organized as follows: Section 2 describes DJSB tool,
experimental setup and the metrics reported. Section 3 describes our dynamic re-
source management execution environment. Section 4 presents evaluation results
comparing among the different scenarios. Section 5 presents related work, from
the point of view of benchmarks and dynamic scheduling evaluation. Finally,
section 6 presents conclusions and future work.

2 DJSB: Dynamic Job Scheduler Benchmark

The purpose of the dynamic scheduling benchmark is to do an automatic perfor-
mance comparison of different solutions on pilot systems. It provides a synthetic
model of a hypothetic interactive session workload. DJSB is implemented as a
Python (configurable) script that drives application execution, monitoring, met-
ric collection and generation of performance metrics and graphs.

Some mock-up parallel applications are provided to represent two types of
applications: a single long running simulation and a potential in situ analysis.
The benchmark will measure the impact of one application on the other and
the decrease of their performances. The focus will be on the ability to support
dynamic scheduling policies, so I/O will be minimal.

DJSB behaviour is configured based on several configurable parts:

— General options. This component defines the global DJSB experiment. It
includes arguments such as the number of samples of applications.

— Job submission options. DJSB can be executed in systems with different
queueing systems. The basic job submission and monitoring commands can
be specified.

— Application options. Specific details for the long running simulation and
the analytics can be specified such as execution time or memory consump-
tion.

DJSB assumes applications are previously compiled. Once it starts, it computes
reference metrics, that is, execution time of each application when running alone
based on Application options. This is the reference stage. Once references are
available, it starts the job submission based on Job submission options and
General options. This execution stage includes the re-execution of the experiment
several times to provide statistically significant measurements. Once execution
stage finishes, a performance metrics file is generated together with the plots to
make easy performance evaluation.

2.1 General options

Some of the most relevant general options are:

— num_of_samples Number of samples or repetitions. One repetition implies
one execution of the whole benchmark (simulation + analysis).

4 DJSB: Dynamic Job Scheduling Benchmark

— sleep_min_time,sleep_max_time Minimum/Maximum sleep time between
each analysis in the execution stage sample.

— num_of_ref_analysis Number of total analytics to be executed per sample
of the reference stage.

— num_of_dyn_analysis Number of total analytics to be executed per sample
of the execution stage.

2.2 Job submission options

DJSB uses a job (Python) module where an API to deal with job submission and
monitoring is specified. This API supports jobs executed in an interactive session,
or submitted in a previously created reservation, together with the interaction
with job schedulers such as SLURM or LSF[21]. Commands to be implemented
in the job module are the next one (a job module template is provided):

— get_submit_command(self): The method must return the shell command
to submit a job. The command can be complemented by the class attributes
from the constructor, such as the total number of tasks, etc.

— get_poll_completion_command(self, submit_stdout, submit_stderr):
The benchmark needs to poll the system until the job completion occurs.
This command returns a shell command to test the condition.

— get_{suspend,resume}_command: To be executed when suspending or
resuming a job

2.3 Application options

DJSB is developed to support different applications but the results presented
in this paper are based on different configurations of the STREAM benchmark
since it was a requirement of the Human Brain Project [2] in its previous stage.

— A single, long running, simulation job. The preferred mock-up appli-
cation will be based on a version of the STREAM benchmark written in
Fortran/C [16]. Parallel versions using MPI only and MPI plus OpenMP
(based on parallel loop) are provided. The STREAM benchmark is a simple
synthetic benchmark program that measures sustainable memory bandwidth
(in MB/s) and the corresponding computation rate for simple vector kernels.

— Application analytics: For analytics we use the same approach and ap-
plication. We use a small version of STREAM executed periodically in the
middle of the big STREAM and requesting part of the resources used by the
big one.

Arguments to provide detailed application descriptions are:

— total _tasks Number of tasks (MPI processes) for the specific application.
— cpus_per_task Number of CPUs per task for the application. Also, number
of OpenMP threads per MPI process.

DJSB: Dynamic Job Scheduling Benchmark 5

— same_nodes_as_sim Only valid for the analysis application. If true, the
analysis will be submitted in the same nodes as the simulation, as long as
the job interface allows it.

— total_memory Total amount of memory to be used for the application

— exec_time Estimated execution time of each instance of the application

— node_host_names List of nodes where the application is allowed to run. The
list is forwarded to the job module. If the list is empty, the job scheduler
should decide the allocation (default option).

— command Path to the application binary.

2.4 Application performance metrics

During reference stage, DJSB collects reference execution time per application,
both simulation and analytics. This reference time is computed as the average
of the several executions performed at the reference stage. During the execution
stage, traditional scheduling metrics are computed such as wait time, response
time, or slowdown.

1. Wait time - the time elapsed between the job submission and the start of
the job.

2. Execution time - the time elapsed between the start of the application and
its completion.

3. Response time - the time elapsed between the job submission and the job
completion (wait time + execution time).

4. Slowdown - the ratio between the response time when the application is exe-
cuted in a workload, i.e., sharing resources with other applications, 7779
and the execution time of the application executed alone on the exclusive
resources, Talone that is collected in reference stage.

Tsharing

slowdown = Tl (1)

REF
Along with these metrics, DJSB computes application weights, which are
equal to the resources the application was occupying during its execution mul-
tiplied by the execution time of the application. The benchmark calculates the
weights for each application and for each scenario. The formulae for calculating
the weights for each specific scenario are given in the Section 4 along with the
description of the scenarios.

2.5 Workload metrics

Based on individual application metrics, traditional workload metrics are pro-
vided such as average wait time, average slowdown and average response time,
along with specific DJSB metric such as the dynamicity. The dynamicity will
greatly depend on the system capability to manage and run different jobs at the
same time. For calculating dynamicity, DJSB uses weighted geometric mean,

6 DJSB: Dynamic Job Scheduling Benchmark

suggested in various works [13], [17], [15] to be used for comparing among the
systems when using relative values such as slowdown. The more capable the
system is to accommodate the applications without high performance penalty,
the dynamicity should be higher. Therefore, we use inverse weighted geomet-
ric mean of the applications slowdowns. For a use case workload, consisting of
a simulation and an analytics, calculating the dynamicity of a specific system,
i.e., scenario reduces to calculating the formula 2. The weights ws and w, are
for simulation and analytics, respectively, and are calculated for each scenario
differently. The slowdowns and slowdown, are the slowdowns of simulation and
analytics, respectively. Thus, we will get a dynamicity value for each scenario,
which allows us to compare different scenarios.

wg In slowdowng +wg -In slowdowng

dynamicity = e~ wstwa (2)

3 Cooperative dynamic resource management

Dynamic scheduling has been a research topic for many years. In this section
we describe the execution environment used in this work, as well as, dynamic
resource management scenario that we will use in the experiments.

Figure 1 shows the main components of our execution environment. The
main characteristic of our execution environment is that the job scheduler and
the resource manager, in this case SLURM, cooperate with an additional run-
time library, Dynamic Load Balancer (DLB), that helps the system to exploit
malleability in an efficient way. One of the main components of DL.B is Dynamic
Resource Ownership Manager (DROM).

The execution environment is composed by the following software compo-
nents :

— Job scheduler i.e., SLURM controller. SLURM is composed of two
components, the SLURM controller and a SLURM daemon per node. The
job scheduler is implemented by SLURM controller, it is in charge of job
submissions. It receives job requirements and it decides when and where a
job can be started based on its requirements, scheduling policy and system
status.

— Node manager, i.e., SLURM daemon extended with DLB-DROM
component. Each Node manager is aware of the number of jobs and pro-
cesses being executed in the node. The Node manager provides resource
management services offered by SLURM extended with DLB-DROM API
for process ownership management. DLB ownership mechanism gives a pos-
sibility for a flexible resource allocation, where processing cores can be used
by processes that do not own them during the cores’ idle periods.

— Programming model libraries, i.e., MPI/OpenMP/OmpSs. These
three programming models are transparently supported. Malleability is eas-
ily supported in OpenMP [8] and OmpSs [11]. Malleability has been also
proposed for MPI in different contexts: Virtual malleability was proposed
for MPI in [18], [12] and it is also included MPI-3. However, even having

DJSB: Dynamic Job Scheduling Benchmark 7

S sbatch ApplicationA.sh
$ sbatch ApplicationB.sh
$ sbatch ApplicationC.sh

SLURMd SLURM d SLURMd

rocess App. B Process App. B

Process App. B
Process App. C

(]
kernel

Process App. A

rocess App. B

Process App. A

2oue|eg peoT dlweuAq
ssdwo/dINusdO
9duejeg peoT dlweuAqg

Fig. 1: Cooperative Dynamic Resource Management

8 DJSB: Dynamic Job Scheduling Benchmark

these proposals, it is a normal practice to exploit the malleability by using a
second level of parallelism and using OpenMP in it. DLB-DROM supports
MPI+OpeMP/OmpSs or only OmpSs as indicated in Figure 1.

Cooperative-dynamic resource management scenario in case of our simulation-
analytics workload works as follows. When the analytics arrives to the system,
the simulation resources are shrunk to accommodate the analytics on as much
resources as it requests. The simulation resources are practically lent to ana-
lytics for some period of time. This dynamic redistribution of resources among
simulation and analytics is done by our SLURM-DROM environment. As soon
as analytics finishes its execution, the resources are returned to simulation, and
the simulation is expanded, using all of its resources. The same scenario repeats
when the new analytics arrives to the system. Section 4 presents the explained
scenario along with the other evaluated scenarios and gives the graphical view
in the Figure 2.

4 Evaluation

4.1 Scenarios

Three different scenarios are used to evaluate the dynamicity of the system.
Dinamicity is defined as the capacity to react to workload changes and reallocate
resources to running jobs in order to minimize expected slowdown. Figure 2
shows these three scenarios.

— Oversubscription. This is a scenario where the simulation has been pre-
viously started by the scheduler and the analytics jobs are submitted to the
same job reservation, thus positively reducing the wait time to zero, but
sharing resources with the simulation. The sharing of resources is fully con-
trolled by operating system. This is untypical scenario in HPC environment
and it is enabled by configuring SLURM to force resource sharing. Typical
scenario would be the one where each job waits in the queue until enough
resources are available. Since analytics jobs need to be executed along with
simulation, the typical scenario is not applicable in this use case.

— Stop&Continue. When the analytics job is submitted, the already running
simulation job is stopped. The analytics job starts without waiting for re-
sources. The old job remains in memory. This is not a problem in case the
memory is not a critical resource. The overhead in this scenario comes from
the time required to stop/resume processes and from the memory that may
be overloaded. We have used SLURM’s [20] suspend/resume mechanism for
this scenario.

— Cooperative-Dynamic Resource Management. Scenario described in
the previous section.

4.2 Configurations

Configuration parameters of DJSB benchmark are given in Table 1. Configura-
tion parameters for simulation and analytics are given in Table 2.

DJSB: Dynamic Job Scheduling Benchmark 9

B simulation
BB Analytics

[}
(]
= Oversubscription
?
[0
o
Time
stop continue stop continue stop continue
®
o Stop&Continue
o
[}
O]
o
Time
§ Dynamic
5 resource management
3
[0
o

Time

Fig.2: Three scenarios: oversubscription, stop&continue, and dynamic resource
management. A single execution of simulation is performed, while multiple in-
stances of analytics are submitted to the same resources over time of simulation’s
execution.

|Argument or Module |Value
Number of samples 3
Number of simulation runs per sample 1

Number of analytics runs per sample (reference stage) |2
Number of analytics runs per sample (execution stage)|1, 2, 4, and 6

Table 1: DJSB configuration parameters

10 DJSB: Dynamic Job Scheduling Benchmark

lArgument Simulation Analytics

Duration 5 min 10 s

Job size 512 or 1024 CPUs 50% of simulation size
Tasks per node 4 2

Memory per task 1GiB, 4GiB and 5 GiB 50 MiB

OpenMP threads 4 per task 4 per task

Table 2: Simulation and analytics configuration parameters

4.3 Metrics

For evaluating the results we will use slowdown and dynamicity, already ex-
plained in the Section 2. Here we give the formulae for calculating weights for
simulation and analytics for each of the scenarios. We use the following notation:

— N&pys - Number of CPUs used by simulation

— Népys - Number of CPUs used by analytics

— Tgeenaro - Execution time of simulation for a given scenario

- Execution time of analytics for a given scenario

— ng - Number of analytics runs during a single simulation execution

_ Tscenario
a

In case of Oversubscription scenario DJSB uses the following formulae:

1
oversubs __ s oversubs a oversubs
Wg = Ncpys - T ~ 5 iYerus g - T, (3)
1
oversubs __ a oversubs
Wq = 5 fYopus” 13 (4)

In case of Stop&Continue scenario DJSB uses the following formulae:

stopcont __ s stopcont stopcont
Wg - NCPUS’ : (Ts — Mg - Ta) (5)
stopcont __ a stopcont
W, - NCPUS' : Ta (6)
In case of Dynamic scenario DJSB uses the following formulae:
dynamic __ s dynamic a dynamic
W = Neopus - Ts — Népys - 1a -1y (7)
dynamic __ a dynamic
Wq = Ncpys - T, (8)
4.4 Results

In order to show the usefulness of DJSB, we have performed a set of real exper-
iments on the local, MareNostrum supercomputer [3]. MareNostrum consists of
3098 computing nodes, with 16 processing cores per node. For our experiments
we requested the computing nodes with 32GB of main memory per node.

We have evaluated the impact of the following parameters on the performance
of the simulation, the analytics and the system:

DJSB: Dynamic Job Scheduling Benchmark 11

— The number of the analytics jobs
— Memory per task of simulation

— The size of the system

Figure 3 (a) shows that slowdown of simulation increases as the number of
analytics that it shares resources with increases. The least impact is in the case
of dynamic scenario — at most 20% of performance loss. The highest impact on
simulation’s performance is in the case of oversubscription scenario, up to 20%
worse than in the case of stop&continue, and up to 30% worse than in case of
dynamic scenario. As Figure 3 (b) shows, the analytics job is the most impacted
in the case of oversubscription up to 214%. It is the least impacted in the case
of stop&continue scenario, as the simulation is stopped during its execution
and the total request for memory per node by both applications is less than
15% of the total node memory. Dynamic scenario leads to up to 104% loss of
analytics performance. We present analytics results for each of the experiments
with different number of analytics (x-axis), but as expected, the analytics does
not change performance depending on how much instances of analytics have
been run. We present average of all the analytics run within a single experiment.
Regarding the system dinamicity, Figure 3 (c) shows that as number of analytics
increases in the workload in general the system is less capable to mange the load
in an effective way. In particular, dynamicity in case of oversubscription goes as
low as 62%, the highest is in case of stop&continue — at least 79%, and in the
case of dynamic, the dynamicity is at least 74%.

Further we configured the benchmark, i.e., the simulation options to request
more memory. The total memory requested by simulation and analytics per node
was more than 50% of total node memory. Figure 4 shows the same set of ex-
periments in the case of higher memory demand. Regarding the slowdowns of
the application, the simulation at most 20% more impacted when its demand for
memory is higher, whereas, analytics suffers significant impact of almost a double
performance loss comparing to the previous set of experiments. The dynamicity
plot shows that the impact of increase in memory requirements by simulation
makes system less capable to deal with the new coming applications. The dynam-
icity goes as low as 52%, 63% and 49% , for oversubscription, stop&continue and
dynamic scenario, respectively. While dynamic scenario might be good for the
system with computation-intesive applications, in case of dominantly memory-
intesive applications, such as STREAM, the dynamic resource management does
not bring better performance than oversubscription scenario.

Finally, we configured benchmark to test the smaller system size, i.e., 512
CPUS. Memory request is the same as in Figure 4. The same set of experiments
is performed in this case, as well. As we can see in the Figure 5 with the change
of system size, the behavior of the system with respect to slowdown of individual
applications and dynamicity of the system remains the same.

12 DJSB: Dynamic Job Scheduling Benchmark

Simulation Analytics
35 35
*
29 29
= I
z # oversubs. z @ oversubs.
-g 23 - stopcor_n 'g 23 & stopcont.
2 dynamic B dynamic
@ @
1.6 1.6
>
.
1.0 ‘ 1.0 L
1 2 4 6 1 2 4 6
number of analytics number of analytics
(a) (b)
System

0.85

N
@ oversubs.

0.7 4 stopcont.
\ dynamic
J

0.55

//

dynamicity

04

2 4 6

number of analytics

(c)

Fig.3: Impact of number of analytics on: (a) slowdown of the simulation, (b)
slowdown of the analytics, and (c) the dynamicity of the system. System size 1024
CPUgs, i.e., 64 computing nodes. Total memory per node is 32GB. Simulation
job requests 1024 CPUs. Analytics job requests 50% of simulation size. Total
memory per node requested by simulation is /GiB. Total memory per node
requested by analytics is 100MiB. Number of analytics per simulation run is
indicated at x-axis.

DJSB: Dynamic Job Scheduling Benchmark 13

Simulation Analytics
6.50 6.50
1’__—.\.\1
»
5.13 5.13
g g
z @ oversubs. 8 175 @ oversubs.
? 375 4 stopcont. E3 - slopcogt.
2 dynamic 2 dynamic
238 238 -
' 1.00
1.00 | 3 B p
1 2 4 6)
number of analytics number of analytics
(a) (b)
System
1
II\
0.85
2
S @ oversubs.
E 07 - (sitopcol_ﬂ.
namic
£ y
0.55 -
>
0.4
1 2 4 6
number of analytics

(c)

Fig.4: Impact of number of analytics on: (a) slowdown of the simulation, (b)
slowdown of the analytics, and (c) the dynamicity of the system. System size 1024
CPUgs, i.e., 64 computing nodes. Total memory per node is 32GB. Simulation
job requests 1024 CPUs. Analytics job requests 50% of simulation size. Total
memory per node requested by simulation is 716GiB. Total memory per node
requested by analytics is 100MiB. Number of analytics per simulation run is
indicated at x-axis.

14 DJSB: Dynamic Job Scheduling Benchmark

Simulation Analytics
65 65
¢
—~
5.1 5.1
g b :
o : ;\;erjznf» £ # oversubs.
H 3 pcont. < 38 & stopcont.
2 ynamic 2 dynamic
=
24 24 ——
0@
10
1 2 4 6 1 2 4 6
number of analytics number of analytics
(a) (b)
System
1
[
085 o~
2
'S @ oversubs.
E 07 4 stopcont.
ES dynamic
5
055
04 ‘

1 2 4
number of analytics

6

(c)

Fig.5: Impact of number of analytics on: (a) slowdown of the simulation, (b)
slowdown of the analytics, and (c) the dynamicity of the system. System size 512
CPUs, i.e., 32 computing nodes. Total memory per node is 32GB. Simulation job
requests 512 CPUs. Analytics job requests 50% of simulation size. Total memory
per node requested by simulation is 16GiB. Total memory per node requested
by analytics is 100MiB. Number of analytics per simulation run is indicated at

X-axis.

DJSB: Dynamic Job Scheduling Benchmark 15

5 Related work

DJSB benchmark, whose purpose is to evaluate the dynamicity of an HPC sys-
tem, is a novel contribution in the literature, since it has never been tried to
measure how the system reacts to dynamic adaptation of the workload.

Typical benchmarks tend to evaluate performance of a HPC systems by
launching and measuring a set of applications’ performance executed in iso-
lation. Those performances are related to the application, that usually stresses
only some component of the system, like processors, memory hierarchy and net-
work. Some examples are the HPC Challenge Benchmark[1] or the benchmark
used by Top500[5], Linpack|[10].

The ESP Benchmark[19] is an approach for evaluating HPC performance.
It evaluates system utilization and effectiveness by executing a medium length
workload of 82 jobs, that varies in type of applications and requested resources,
from a small job to jobs that take all system resources. With this approach, ESP
permits to measure the efficiency of the system evaluating scheduling, and the
system utilization. Our approach, DJSB permits, not only running diverse ap-
plications, but configuring differently the same applications in terms of memory
requirements, application size, duration, etc. It evaluates the impact of different
dynamic resource management approaches on each application individually, as
well as the overall dynamicity of the system.

6 Conclusions and Future work

This paper presents DJSB, a tool targeted to evaluate HPC systems using dif-
ferent schedulers, applications characteristics and submission arguments. DJSB
is an experiment-driven tool for HPC systems that, based on its configuration,
executes a reference stage to collect reference performance metrics and later on
executes the described workload. Workload description can be more or less spe-
cific, resulting in a fixed workload or something more variable. DJSB automat-
ically collects performance metrics for applications and generates performance
metric summaries and plots to make easy the comparison between scenarios.
To illustrate the potential of DJSB, we have performed three different sets of
experiments, each one including many variations concerning system size, ap-
plication size, memory size, number of applications, etc. We have compared
a stop&continue approach compared with oversubscription and a cooperative-
dynamic resource management. Our experiments show that DJSB allows for
an easy comparison of the systems that use different resource management ap-
proaches.

Acknowledgments. This work is supported by the Spanish Government through
Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science
and Technology (project TIN2015-65316-P), by the Generalitat de Catalunya
(grant 2014-SGR-1051), by the European Union’s Horizon 2020 research and
innovation program under grant agreement No. 720270 (HBP SGA1).

16

DJSB: Dynamic Job Scheduling Benchmark

References

N

S

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hpc challenge benchmark website, http://icl.cs.utk.edu/hpcc/

The human brain project, https://www.humanbrainproject.eu/

Marenostrum supercomputer, https://wuw.bsc.es/discover-bsc/the-centre/
marenostrum

Message passing interface forum, http://www.mpi-forum.org/

Top500 website, https://www.top500.org/

Barcelona Supercomputing Center: The OmpSs Programming Model, https://
pm.bsc.es/ompss

Clauss, C., Moschny, T., Eicker, N.: Dynamic process management with allocation-
internal co-scheduling towards interactive supercomputing. In: Proc. 1th Workshop
Co-Scheduling of HPC Applicat.(Jan 2016) (2016)

Dagum, L., Enon, R.: Openmp: an industry standard api for shared-memory pro-
gramming. Computational Science & Engineering, IEEE 5(1), 46-55 (1998)
Desai, N.: Cobalt: an open source platform for hpc system software research. In:
Edinburgh BG/L System Software Workshop (2005)

Dongarra, J.J., Luszczek, P., Petitet, A.: The linpack benchmark: past, present
and future. Concurrency and Computation: practice and experience 15(9), 803—
820 (2003)

Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Processing Letters 21(02), 173-193 (2011)

El Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Malleable iterative
mpi applications. Concurrency and Computation: Practice and Experience 21(3),
393-413 (2009)

Fleming, P.J., Wallace, J.J.: How not to lie with statistics: The correct way to
summarize benchmark results. Commun. ACM 29(3), 218-221 (1986)

Henderson, R.L.: Job scheduling under the portable batch system. In: Job schedul-
ing strategies for parallel processing. pp. 279-294. Springer (1995)

Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems:
Twelve ways to tell the masses when reporting performance results. In: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis (2015)

McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter pp. 19-25 (Dec 1995)

Smith, J.E.: Characterizing computer performance with a single number. Commun.
ACM 31(3), 1202-1206 (1988)

Utrera, G., Tabik, S., Corbalan, J., Labarta, J.: A job scheduling approach for
multi-core clusters based on virtual malleability. In: Euro-Par 2012 Parallel Pro-
cessing, pp. 191-203. Springer (2012)

Wong, A.T., Oliker, L., Kramer, W.T., Kaltz, T.L., Bailey, D.H.: Esp: A system
utilization benchmark. In: Supercomputing, ACM/IEEE 2000 Conference. pp. 15—
15. IEEE (2000)

Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: Simple linux utility for resource
management. In: Workshop on Job Scheduling Strategies for Parallel Processing.
pp. 44-60. Springer (2003)

Zhou, S., Zheng, X., Wang, J., Delisle, P.: Utopia: a load sharing facility for large,
heterogeneous distributed computer systems. Software: practice and Experience
23(12), 1305-1336 (1993)

