Combinatorics of Beacon-based Routing in Three Dimensions ${ }^{\star, \star \star}$

Jonas Cleve, Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin, Berlin, Germany

Abstract

A beacon $b \in \mathbb{R}^{d}$ is a point-shaped object in d-dimensional space that can exert a magnetic pull on any other point-shaped object $p \in \mathbb{R}^{d}$. This object p then moves greedily towards b. The motion stops when p gets stuck at an obstacle or when p reaches b. By placing beacons inside a d-dimensional polyhedron P, we can implement a scheme to route point-shaped objects between any two locations in P. We can also place beacons to guard P, which means that any point-shaped object in P can reach at least one activated beacon.

The notion of beacon-based routing and guarding was introduced in 2011 by Biro et al. [FWCG'11]. The two-dimensional setting is discussed in great detail in Biro's 2013 PhD thesis [SUNY-SB'13].

Here, we consider combinatorial aspects of beacon routing in three dimensions. We show that $\lfloor(m+1) / 3\rfloor$ beacons are always sufficient and sometimes necessary to route between any two points in a given polyhedron P, where m is the smallest size of a tetrahedral decomposition of P. This is one of the first results to show that beacon routing is also possible in higher dimensions.

Keywords: beacon routing, three dimensions, polytopes

1. Introduction

Visibility in the presence of obstacles is a classic notion in combinatorial and computational geometry [11]. Given a simple polygon P in the plane, two points p and q in P can see each other if and only if the line segment between p and q lies in P (considered as a closed region). The visibility region of a point $p \in P$ consists of all points $q \in P$ such that p and q can see each other. These basic

[^0]

Figure 1: Attraction is not symmetric. In this two-dimensional example b_{1} attracts b_{2} (left) but b_{2} does not attract b_{1} (right).
definitions and their variants have spawned an active subarea of computational geometry, with whole textbooks devoted to it [11, 16].

In 2011, Biro et al. 6] introduced the concept of beacon-based visibility, where the objects take a more active role. A beacon $b \in \mathbb{R}^{d}$ is a point-shaped object in d-dimensional space. The beacon b can be enabled or disabled. Once b is enabled, it exerts a magnetic pull on any other point-shaped object p in \mathbb{R}^{d}. Then, the object p moves in the direction that most rapidly decreases the distance between b and p. In the simplest case, this motion proceeds along the line segment $p b$. If p encounters an obstacle that blocks the direct path along $p b$, then p slides along the boundary of the obstacle in the direction that most rapidly decreases the distance to b. If this is not possible, the motion ends, and we say that p gets stuck. If p does not get stuck, then it reaches b, and we say that p is attracted by b. See Fig. 1 for examples. The attraction region of b consists of all points that are attracted by b. This is an extension of classic visibility: the visibility region of b is a subset of the attraction region of b. However, unlike classic visibility, beacon attraction is not symmetric. Thus, it makes also sense to consider the inverse attraction region of a point p, i.e., the set of all beacon positions b such that b attracts p. Two examples of these regions can be found in Fig. 2 ,

The PhD thesis of Biro [5] constitutes the first in-depth study of beaconbased visibility. In particular, it considers beacon-based routing and guarding in (two-dimensional) polygonal domains. The idea of beacon-based routing is as follows: suppose we have a polygonal domain P that contains a set B of beacons, and suppose we want to route a point-shaped object p towards a target t. We assume that t can also act as a beacon, even if it is not contained in B. The routing proceeds by successive activation of beacons in $B \cup\{t\}$: a first beacon $b_{1} \in B$ is enabled to attract p until it reaches b_{1}. Subsequently, b_{1} is disabled,

Figure 2: The attraction region of a beacon b (left) and the inverse attraction region of a point p (right).
and a second beacon $b_{2} \in B$ is switched on, again attracting p until it reaches b_{2}. This is repeated until the last (implicit) beacon at t is enabled and finally attracts p to its location. The challenge is to devise a strategy for placing the beacons in P and for choosing a sequence of beacon activations such that it becomes possible to route between any two locations s and t in P. The size of B should be minimized. Note that we require that every activated beacon must attract p until it reaches the beacon's location. Only then are we allowed to enable the next beacon. Thus, if p gets stuck, the process ends and the routing is considered to be unsuccessful.

In beacon-based guarding (or coverage), the goal is to choose a minimum-size set B of beacons such that the union of the attraction regions for B covers the whole polygonal domain P. In this case, we say that B covers P. This is analogous to the classic art-gallery problem [16] , using beacon-based visibility instead of straight-line visibility.

1.1. Related Work

Two dimensions. As mentioned above, a large part of the pioneering work on beacon-based routing and guarding was done by Biro and his co-authors [6-8]. An extensive collection of results can be found in Biro's PhD thesis 5].

Biro and his co-authors showed that $\lfloor n / 2\rfloor-1$ beacons always suffice and sometimes are necessary for routing in a simple polygon with n vertices 7 , Theorem 1]. We will discuss this result in more detail in Section 2. More generally, to route in a polygon with n vertices and h holes, $\lfloor n / 2\rfloor-h-1$ beacons are sometimes necessary and $\lfloor n / 2\rfloor+h-1$ beacons are always sufficient 7 , Theorem 2]. For orthogonal polygons ${ }^{1}$, they showed only a loose lower bound of $\lfloor n / 4\rfloor-1$ beacons, leaving a larger gap for the routing problem [7, Theorem 3].

For beacon-based guarding of a simple polygon and of a polygon with h holes, they showed that $\lfloor 4 n / 13\rfloor$ beacons are sometimes necessary, while $\lfloor(n+h) / 3\rfloor$ beacons are always sufficient [7, Theorem 5]. In particular, the upper bound for simple polygons is $\lfloor n / 3\rfloor$. For orthogonal polygons, they obtained an upper bound of $\lfloor n / 4\rfloor$ and a lower bound of $\lfloor(n+4) / 8\rfloor[7$, Section 6].

Bae et al. [3] improved some of these bounds by showing that $\lfloor n / 6\rfloor$ beacons are sometimes needed and always sufficient for beacon-based guarding in orthogonal polygons. They also proved that if the polygon is monotone and orthogonal, the bound reduces to $\lfloor(n+4) / 8\rfloor$. The gap for routing in simple orthogonal polygons was finally closed by Shermer 18 who showed that $\lfloor(n-4) / 3\rfloor$ beacons are always sufficient and sometimes necessary.

Aldana-Galván et al. [1] extended the notion of coverage to both the interior and the exterior of a given polygon. They proved that $\lfloor n / 4\rfloor+1$ vertex beacons always suffice to simultaneously cover the interior and exterior of an orthogonal polygon with n vertices (possibly with holes) [1, Theorem 1]. Table 1 gives an overview of the currently best results for routing and guarding in two dimensions.

[^1]| Problem | Bound | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Polygon type | Lower | Upper | Reference |
| Routing | Simple | $\begin{aligned} \lfloor n / 2\rfloor-1 \\ \lfloor n / 2\rfloor-h-1(*)\lfloor n / 2\rfloor+h-1 \\ \lfloor(n-4) / 3\rfloor \end{aligned}$ | | 7. Thm 1] |
| | With holes | | | 7. Thm 2] |
| | Orthogonal | | | 18 |
| Guarding | Simple | $\lfloor 4 n / 13\rfloor$ | $\lfloor n / 3\rfloor$ (*) | 7. Thm 5] |
| | With holes | $\lfloor 4 n / 13\rfloor$ | $\lfloor(n+h) / 3\rfloor(*)$ | 7. Thm 5] |
| | Orthogonal | $\lfloor n / 6\rfloor$ | | 3 |

Table 1: The currently best results in two dimensions. The bounds marked (*) were conjectured to be tight by Biro 5, Conjectures 6.3.3, 7.3.7, and 7.3.9]

So far, we have only discussed results that give combinatorial bounds on the number of beacons needed to guard or to route in certain classes of polygons. Naturally, the notions of beacon-based routing and guarding also lead to interesting algorithmic questions. As is to be expected, several optimization problems associated with beacons are hard: Biro [5, Theorems 6.2.2, 6.2.3, and 6.2.4] showed that the All-Pair, All-Sink, and All-Source variants of the optimal beacon routing problem are NP-hard. In these problems, we are given a simple polygon P, and we need to find a minimum set B of beacons such that we can route between any pair of points in P; from a given location $s \in P$ to all other points in P; or from all points in P to a given location $t \in P$, respectively. Biro also showed that given a simple polygon P, it is NP-hard to find a minimum set of beacons that covers P [5, Theorem 7.2.1].

On the positive side, Biro et al. [8, Theorem 6] presented an algorithm to compute the attraction region of a given beacon in a polygon P with n vertices and h holes in $O\left(n+h \log ^{1+\varepsilon} h\right)$ time and $O(n)$ space, for any fixed $\varepsilon>0$. They also described how to find the inverse attraction region of a point in a polygon P with n vertices in $O\left(n^{2}\right)$ time [8, Theorem 8]. More generally, the inverse attraction region of a polygonal region R in P with m vertices can be computed in $O\left(n^{2} m^{2}\right)$ time [8, Theorem 8]. As for routing, Biro et al. show how to find a minimum-hop-beacon path between two points s and t in a polygon with n vertices and h holes from a given set of m beacons in $O\left(m\left(n+h \log ^{1+\varepsilon} h+m \log h\right)\right)$ time 8, Theorem 11]. They also provide a $O\left(n^{3}\right)$-time 2-approximation algorithm for the case that the beacons can be placed arbitrarily inside the polygon. As the authors point out, this approximation algorithm can also be applied repeatedly to obtain a PTAS. More recently, Kostitsyna et al. 13 gave an optimal algorithm to compute the inverse beacon attraction region of a point in a simple polygon in $O(n \log n)$ time. Further algorithmic results can be found in Kouhestani's PhD thesis 14.

Three dimensions. This work is based on the Master's thesis of the first author [10] who presented the first combinatorial bounds for beacon-based routing in three dimensions. In his thesis, Cleve also showed that Biro's NP-hardness and APX-hardness results for optimum beacon routing extend to three dimensions,
by a simple lifting argument [10, Section 4.3]. Finally, he constructed a threedimensional polyhedron that cannot be guarded by placing a beacon at every vertex [10, Lemma 6.1]. Independently, and almost at the same time, AldanaGalván et al. [2, Section 2] obtained a stronger result: there exists an orthogonal polyhedron that cannot be covered by beacons at every vertex. Furthermore, Aldana-Galván et al. [2, Theorem 1] showed that every orthotre ${ }^{2}$ with n vertices can be covered by $\lfloor n / 8\rfloor$ beacons. They described a family of orthotrees where this number of beacons is needed. They also proved a tight bound of $\lfloor n / 12\rfloor$ becons for well-separated orthotrees ${ }^{3}$ Shortly afterwards, Aldana-Galván et al. [1] introduced the notion of edge beacons. Here, every point of an edge e may exert a magnet pull on a point-shaped object p, and p always moves towards the point on e closest to it. Aldana-Galván et al. prove that $\lfloor m / 12\rfloor$ edge beacons are always sufficient and sometimes $\lfloor m / 21\rfloor$ edge beacons are necessary to cover an orthogonal polyhedron with m edges [1, Theorems 3 and 4]. If both the interior and the exterior of an orthogonal polyhedron should be covered simultaneously, $\lfloor m / 6\rfloor$ is a tight bound for the number of edge beacons required [1, Theorem 5].

2. Preliminaries

We begin by reviewing the proof that $\lfloor n / 2\rfloor-1$ beacons are needed for routing in a simple polygon with n vertices 7 , Theorem 1]. This serves two purposes: on the one hand, the argument serves as a starting point for our three-dimensional bound; on the other hand, it provides an opportunity to correct a slight gap in the published proof by Biro et al. $7 \sqrt[4]{4}$

2.1. Two-dimensional Upper Bound

The following theorem states the main result for beacon-based routing in two dimensions.

Theorem 1 (Biro et al. [7, Theorem 1]). Let P be a simple polygon with n vertices. Then, $\lfloor n / 2\rfloor-1$ beacons are sometimes necessary and always sufficient to route between any two points in P.

The strategy of Biro et al. 7] is as follows: they triangulate P to obtain a partition into $n-2$ triangles. Then, they place the beacons in P with an inductive strategy. In each step, one beacon b is placed, and at least two triangles are removed. They claim that there is always a way to position b on the boundary of the remaining polygon such that the whole interior of the removed triangles

[^2]

Figure 3: The situation analyzed by Biro et al. 7. Here, b can be placed near D so that b can see every point inside $A B D F C$. The edges $A B, A C, C F$, and $D F$ are boundary edges and $B D$ is a diagonal.
can be seen from b. The inductive procedure ends as soon as no more triangles are left. Biro et al. conclude that $\lfloor n / 2\rfloor-1$ beacons suffice for routing.

The technical heart of the argument lies in an analysis of different triangle configurations. The goal is to show that by placing a single beacon, at least two triangles can be removed. One configuration is as follows ${ }^{5}$ we have a central triangle $\sigma_{2}=\triangle B C D$ with two adjacent triangles $\sigma_{1}=\triangle A B C$ and $\sigma_{3}=\triangle C D F$. Biro et al. 7 would like to argue that one can position a beacon b on the free edge $B D$ of σ_{2} such that the whole polygon $A B D F C$ is completely visible to b; see Fig. 3. More precisely, their reasoning goes like this:

The location b along $B D$ is chosen so the pentagon $A B D F C$ is visible to b. This is always possible, by placing b on the correct side of lines $C F$ and $A C$. Then, any point in triangles $\triangle A B C, \triangle B C D$, $\triangle C D F$ can be routed to or from b as b is visible to each point in those triangles. - 7, p. 2]

However, the condition that b lies to the right of $A C$ and to the left of $F C$ is not sufficient for the whole pentagon $A B D F C$ to be visible from b. For this, b must also be to the left of $A B$ and to the right of $F D$, i.e., in the visibility cone of both σ_{1} and σ_{3}. Figure 4a shows a situation where this cannot be done: the line through B and D limits the visibility of any beacon b in the relative interior of the line segment $B D$. Moreover, if we place b at B or at D, then b still cannot see the full pentagon.

Nonetheless, visibility is not actually required; mutual attraction would be enough for the argument to go through. In fact, we can always place b so that it attracts all points inside the pentagon $A B D F C$. Unfortunately, the inverse does not hold. Consider Fig. 4b, unless b is placed at B, a point-shaped object at b that is attracted by A will get stuck on the line segment $B G$; and analogously

[^3]

Figure 4: It is not always possible to place one beacon b on the line segment $B D$ such that it attracts and is attracted by all points inside the pentagon $A B D F C$.
for D and F. Since b cannot be placed simultaneously at both B and D, the requirement that b is attracted by both A and F cannot be fulfilled.

Nevertheless, Theorem 1 still holds, as we will show in the following lemma. For completeness, we present the proof in full detail, and we indicate where we depart from the original argument of Biro et al. [7. Theorem 1].

Lemma 2 (Two-dimensional upper bound). Let P be a simple polygon with $n \geq 2$ vertices. Then, $\lfloor n / 2\rfloor-1$ beacons are always sufficient to route between any two points in P.

Proof. The proof proceeds by induction on n. For the base case, we assume that $2 \leq n \leq 4$. If $n \in\{2,3\}$, then P is either a line segment or a single triangle. In both cases, P is convex and no beacon is needed. For $n=4$, we let d be a diagonal of $P{ }^{[6]}$ We place one beacon at an arbitrary point b on d. Then, every point $p \in P$ can see b, which means that p and b mutually attract. Thus, we can route from every $s \in P$ to every $t \in P$ via b.

Now suppose that $n>4$ and assume that Lemma 2 holds for all simple polygons with at most $n-1$ vertices. We triangulate P and consider the dual graph T of the triangulation: the triangles constitute the nodes, and two nodes are adjacent if and only if the corresponding triangles share an edge in the triangulation. As P is simple, T is a tree with $n-2$ nodes and maximum degree 3. We take an arbitrary leaf of T, and we declare it the root. Let σ_{1} be a triangle that corresponds to a deepest leaf in T. Let σ_{2} be the parent triangle of σ_{1}. There are two cases:

Case 1: the triangle σ_{1} is the only child of σ_{2}. Let σ_{3} be the parent triangle of σ_{2}. Then, the triangles σ_{1}, σ_{2}, and σ_{3} share a common vertex v, and we place a beacon b at v; see Fig. 5a. Next, we remove from P the parts of σ_{1} and σ_{2}

[^4]

Figure 5: The two possible configurations in the inductive step are shown in (a) and (b) (c) shows the situation of (b) after removing the triangles.
that do not belong to another triangle of P. This gives a simple polygon P_{1} with $n_{1}=n-2$ vertices. By the inductive hypothesis, there is a set B_{1} of at most

$$
\left\lfloor\frac{n_{1}}{2}\right\rfloor-1=\left\lfloor\frac{n-2}{2}\right\rfloor-1=\left\lfloor\frac{n}{2}\right\rfloor-2
$$

beacons that allows us to route between any two points in P_{1}. We set $B=B_{1} \cup\{b\}$. Then, we have $|B| \leq\lfloor n / 2\rfloor-1$.

It remains to show that we can use B to route between any two points in P. By the inductive hypothesis and because b lies in σ_{3} which remains in P_{1}, we can route between b and any point in P_{1}. Furthermore, due to convexity of triangles, every point $p \in \sigma_{1} \cup \sigma_{2}$ can see b, and thus p can attract b and can be attracted by it. Hence, we can route between any pair of points in P using B.

Case 2: the triangle σ_{2} has a second child σ_{3}. This is the erroneous case in Biro et al. [7, Theorem 1]. Let σ_{4} be the parent triangle of σ_{2}. Since σ_{1} is a deepest leaf in T, if follows that σ_{3} is also a leaf; see Fig. 5b. Instead of placing a single beacon and removing three triangles, as suggested by Biro et al. 7. Theorem 1], we place two beacons b_{1}, b_{2} and remove four triangles. The beacon b_{1} is placed at the common vertex of σ_{1}, σ_{2}, and σ_{4} (marked red), and b_{2} is placed at the common vertex of σ_{3}, σ_{2}, and σ_{4} (marked blue). If σ_{4} has more neighbors, they are also covered by $\left\{b_{1}, b_{2}\right\}$, see Fig. 5b.

We remove from P the set $\left(\sigma_{1} \cup \sigma_{2} \cup \sigma_{3}\right) \backslash\left\{b_{1}, b_{2}\right\}$ and the interior of σ_{4}. This gives two polygons P_{1} and P_{2} with one common vertex, see Fig. 5c. Possibly, P_{1} or P_{2} (or both) degenerates to a line segment from b_{1} or b_{2} to the common vertex. Let $n_{1} \geq 2$ be the number of vertices of P_{1}, and $n_{2} \geq 2$ the number of vertices of P_{2}. We have $n_{1}+n_{2}=n-2$, since we removed three vertices, and since P_{1} and P_{2} share one vertex to be counted twice. As $n_{1} \leq n-1$ and $n_{2} \leq n-1$, we can apply the inductive hypothesis to P_{1} and P_{2}. This gives two sets $B_{1} \subset P_{1}$ and $B_{2} \subset P_{2}$ of beacons with $\left|B_{1}\right| \leq\left\lfloor n_{1} / 2\right\rfloor-1$ and $\left|B_{2}\right| \leq\left\lfloor n_{2} / 2\right\rfloor-1$. We set

Figure 6: Two counterexamples for the alternative proof of Biro et al. 6].
$B=B_{1} \cup B_{2} \cup\left\{b_{1}, b_{2}\right\}$. Then,

$$
\begin{aligned}
|B| & =\left|B_{1}\right|+\left|B_{2}\right|+2 \leq\left\lfloor\frac{n_{1}}{2}\right\rfloor-1+\left\lfloor\frac{n_{2}}{2}\right\rfloor-1+2 \\
& =\left\lfloor\frac{n_{1}}{2}\right\rfloor+\left\lfloor\frac{n_{2}}{2}\right\rfloor \leq\left\lfloor\frac{n_{1}+n_{2}}{2}\right\rfloor=\left\lfloor\frac{n-2}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor-1
\end{aligned}
$$

It remains to show that we can route between any two points in P. By the inductive hypothesis, and since b_{1} lies on the boundary of P_{1} and b_{2} on the boundary of P_{2}, we can route between b_{1} and any point in P_{1}, and between b_{2} and any point in P_{2}. Moreover, since b_{1} and b_{2} both lie in σ_{2}, they can see and thus attract each other. Also, since every removed triangle $\sigma_{1}, \sigma_{2}, \sigma_{3}$, and σ_{4} contains either b_{1} or b_{2}, every point in $\bigcup_{i=1}^{4} \sigma_{i}$ can attract and be attracted by b_{1} or b_{2}. It follows that for every point $p \in P$, we can route between p and b_{1} or between p and b_{2}. Since we also can route between b_{1} and b_{2}, it follows that we can route between any two points in P.

Remark. The extended abstract for the original paper by Biro et al. from 2011 [6], available on Irina Kostitsyna's ResearchGate profile, contains an alternative proof for Theorem 1 . This version handles Case 2 slightly differently. However, we believe that it is susceptible to the same issues as the more recent version of the proof 7 . More precisely, in the alternative proof, the authors use the same notation as in Fig. 3. They say that if $\angle F C B>3 \pi / 2$, the beacon b should be placed at C. From this, it follows that $\angle C B E \leq 3 \pi / 2$. The authors claim that then, "all points inside $\triangle B D E$ can reach b and vice versa". However, Fig. 6ashows a case where E cannot attract b. A similar counterexample applies for the symmetric case where $\angle E B C>3 \pi / 2$ and b is placed at B. If both $\angle F C B \leq 3 \pi / 2$ and $\angle E B C \leq 3 \pi / 2$, then b is to be placed "arbitrarily at either B or $C^{\prime \prime}$, but Fig. 6b shows a configuration where both positions cannot be attracted by all points inside the four triangles.

2.2. Tetrahedral Decompositions

To generalize the proof strategy from Theorem 1 to \mathbb{R}^{3}, we need a threedimensional analogue of polygon triangulation: the decomposition of a bounded polyhedron into tetrahedra. This creates several difficulties that are not present in the two-dimensional case. In 1911, Lennes [15] showed that there are polyhedra that cannot be decomposed into tetrahedra without additional Steiner points. In fact, it is NP-complete to decide whether a tetrahedral decomposition without Steiner points exists [17]. The size of a tetrahedral decomposition is the number of tetrahedra contained in it. Unlike in two dimensions, the size of a tetrahedral decomposition may significantly exceed the number of vertices in the polyhedron. Chazelle [9] showed that for any n, there exists a polyhedron with $\Theta(n)$ vertices for which any decomposition into convex parts needs at least $\Omega\left(n^{2}\right)$ pieces. On the other hand, Bern and Eppstein [4, Theorem 13] described how to decompose any polyhedron into $O\left(n^{2}\right)$ tetrahedra using $O\left(n^{2}\right)$ Steiner points. Furthermore, a tetrahedral decomposition clearly must have size at least $n-3$. A single polyhedron may have different tetrahedral decompositions of varying sizes. For example, the triangular bipyramid can be decomposed into two or three tetrahedra [17, p. 228]. Thus, our bounds will be in terms of the minimum size of a decomposition rather than the number of vertices. Steiner points are allowed.

To extend the ideas for two dimensions to \mathbb{R}^{3}, we must understand the dual graph of a tetrahedral decomposition. This graph is defined as follows:

Definition 3. Given a tetrahedral decomposition $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$ of a threedimensional polyhedron, the dual graph $D(\Sigma)$ of Σ is the undirected graph with vertex set $\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}$ in which there is an edge between two distinct tetrahedra σ_{i} and σ_{j} if and only if σ_{i} and σ_{j} share a triangular facet.

Similarly to the two-dimensional case, the dual graph $D(\Sigma)$ of a tetrahedral decomposition has maximum degree 4. However, unlike in two dimensions, $D(\Sigma)$ is not necessarily a tree. The following lemma provides a tool for placing beacons in connected subgraphs of $D(\Sigma)$.

Lemma 4. Let Σ be a tetrahedral decomposition of a three-dimensional polyhedron, and let $D(\Sigma)$ be the dual graph of Σ. Consider a set $S \subseteq \Sigma$ of tetrahedra such that the induced subgraph $D(S)$ of $D(\Sigma)$ is connected. Then,
(i) if $|S|=2$, the tetrahedra in S share a triangular facet;
(ii) if $|S|=3$, the tetrahedra in S share one edge; and
(iii) if $|S|=4$, the tetrahedra in S share at least one vertex.

Proof. We consider the three cases separately.
Case (i): this follows directly from Definition 3
Case (ii): since $D(S)$ is connected and since $|S|=3$, there is a tetrahedron $\sigma \in S$ adjacent to the other two. By Definition 3, this means that σ shares a

Figure 7: The three possible configuration for a polyhedron with a decomposition into four tetrahedra. The shared vertex or edge is marked.
facet with each of the other two tetrahedra. Since σ is a tetrahedron, any two facets in σ share an edge. The claim follows.

Case (iii): see Fig. 7 . Let $S^{\prime} \subset S$ be three tetrahedra in S so that $D\left(S^{\prime}\right)$ is connected. By (ii), the tetrahedra in S^{\prime} share an edge e. By Definition 3, the remaining tetrahedron in $S \backslash S^{\prime}$ shares a facet f with a tetrahedron $\sigma \in S^{\prime}$. Since e contains two vertices of σ while f contains three vertices, e and f must share at least one vertex. The claim follows.

3. An Upper Bound for Beacon-based Routing

We now give an upper bound on the number of beacons needed to route within a polyhedron, extending the strategy of Biro et al. [7], as described in Section 2, to three dimensions. We want to show the following:

Theorem 5. Let P be a three-dimensional polyhedron, and let Σ be a tetrahedral decomposition of P of size m. There is a set of at most $\lfloor(m+1) / 3\rfloor$ beacons that allows us to route between any pair of points in P.

The rest of this section is dedicated to the inductive proof of Theorem 5 . The following lemma constitutes the base case of the induction.

Lemma 6 (Base case). Let P be a three-dimensional polyhedron, and let Σ be a tetrahedral decomposition of P of size $m \leq 4$. There is a set of at most $\lfloor(m+1) / 3\rfloor$ beacons that allows us to route between any pair of points in P.

Proof. If $m=1$, then P is a convex tetrahedron, and no beacon is needed. If $m \in\{2,3,4\}$, we apply Lemma 4 to obtain a vertex v that is common to all tetrahedra in Σ. We place one beacon b at v. By convexity, every point in P can attract and be attracted by b, and the claim follows.

We proceed to the inductive step. For this, we consider a tetrahedral decomposition Σ of size $m>4$. Our goal is to place k beacons, for some $k \geq 1$,

(a) Remove σ_{1}, σ_{3}, and σ_{4} by placing a beacon where all four tetrahedra meet.

(d) Remove σ_{1}, σ_{2}, and σ_{4} by placing a beacon where all four tetrahedra meet.

(b) Remove σ_{1}, σ_{2}, and σ_{3} by placing a beacon where all four tetrahedra meet.

(e) Remove $\sigma_{1}, \sigma_{2}, \sigma_{4}$, and σ_{5} by placing a beacon where σ_{1} to σ_{5} meet.

(c) Remove σ_{1}, σ_{2}, and σ_{3} by placing a beacon where all four tetrahedra meet.

(f) The number and configuration of σ_{6} 's children must be looked at

Figure 8: The possible configurations in the first part of the inductive step.
such that the beacons lie in at least $3 k+1$ tetrahedra and therefore can attract and can be attracted by all points in those tetrahedra. Then, we remove at least $3 k$ tetrahedra, leaving a polyhedron with a tetrahedral decomposition of size strictly less than m. We apply induction, and then show how to route between the smaller polyhedron and the removed tetrahedra.

To do this, we look at the dual graph $D(\Sigma)$ of Σ, as in Definition 3. Let T be a spanning tree of $D(\Sigma)$, rooted at an arbitrary leaf. We do not distinguish between nodes of T and the corresponding tetrahedra. Let σ_{1} be a deepest leaf of T. If there are multiple such leaves, we choose σ_{1} such that its parent σ_{2} has the largest number of children, breaking ties arbitrarily. Fig. 8 shows the different cases how T can look like around σ_{1} and σ_{2}. First, we focus on Figs. 8a to 8 e . In all five cases, T must have at least one additional root node - either because $m \geq 5$ or because T is rooted at a leaf. The situation in Fig. 8 f will be dealt with in Lemma 9.

Lemma 7 (Inductive step I). Let P be a three-dimensional polyhedron, and Σ a tetrahedral decomposition of P of size $m \geq 5$. Let T be a spanning tree of the dual graph $D(\Sigma)$, rooted at a leaf of T. Let σ_{1} be a deepest leaf of T with the maximum number of siblings, and σ_{2} its parent. Assume that one of the following conditions holds:
(i) σ_{2} has exactly three children σ_{1}, σ_{3}, and σ_{4} (see Fig.8a);
(ii) σ_{2} has exactly two children σ_{1} and σ_{3}, and a parent σ_{4} (Fig. 8b);
(iii) σ_{2} has exactly one child σ_{1} and is the only child of its parent σ_{3}, whose parent is σ_{4} (Fig. 8c);
(iv) σ_{2} has exactly one child σ_{1} and its parent σ_{3} has two or three children at least one of which, say σ_{4}, is a leaf (Fig. 8d); or
(v) σ_{2} has exactly one child σ_{1} and its parent σ_{3} has three children, each of which has a single leaf child (Fig. 8e).

Then, we can place a beacon b at a vertex of σ_{1} such that b lies in at least four tetrahedra. After that, we can remove at least three of these tetrahedra so that T stays a tree and at least one remaining tetrahedron in T contains b.

Proof. We consider the cases individually.
Cases (i-iv): in each case, the induced subgraph on $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ is connected. Thus, Lemma 4(iii) implies that the four tetrahedra share a vertex v. We place b at v. After that, we remove either σ_{1}, σ_{3}, and σ_{4} (case (i); σ_{1}, σ_{2}, and σ_{3} (cases (ii) and (iii); or σ_{1}, σ_{2}, and σ_{4} (case (iv)). In each case, we remove either only leaves or inner nodes with all their children. This means that the tree structure of T is preserved. Moreover, we only remove three of the four tetrahedra that contain b, so one of them remains in T.

Case (v): as shown in Fig. 8e we have three connected sets, each containing σ_{3}, a child σ_{i} of σ_{3}, and σ_{i} 's child: $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\},\left\{\sigma_{5}, \sigma_{4}, \sigma_{3}\right\}$, and $\left\{\sigma_{7}, \sigma_{6}, \sigma_{3}\right\}$. By Lemma 4|(ii), each set has a common edge. These three edges all occur in σ_{3}, and since σ_{3} is a tetrahedron, at least two of them share an endpoint v. Without loss of generality, let these be the common edges of $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ and of $\left\{\sigma_{5}, \sigma_{4}, \sigma_{3}\right\}$. We place b at v, and we remove $\sigma_{1}, \sigma_{2}, \sigma_{4}$, and σ_{5}. The beacon b is also contained in σ_{3}, which remains in T.

The final configuration is shown in Fig. 8f. The following lemma provides an analysis of how the tetrahedra can intersect in this case.

Lemma 8. Let Σ be a tetrahedral decomposition of size 6 , and suppose that $D(\Sigma)$ has a spanning tree as in Fig. 9a. Then at least one of the following holds:
(i) $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$, and σ_{5} have a common vertex; or
(ii) $\sigma_{3}, \sigma_{4}, \sigma_{5}$, and σ_{6} share a common vertex $v ; \sigma_{1}, \sigma_{2}, \sigma_{3}$, and σ_{6} share a common edge e; and $v \cap e=\emptyset$. A symmetric situation is also possible.

Proof. Let $S_{1}=\left\{\sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{6}\right\}$ and $S_{2}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{6}\right\}$. By Lemma 4, each set shares at least a vertex, but it may also share an edge. There are three cases:

Case 1: both S_{1} and S_{2} share an edge. These edges must belong to the triangular facet that connects σ_{3} and σ_{6}. Thus, they share a common vertex, and (i) holds.

Figure 9: A tetrahedron σ_{6} with a subtree of five tetrahedra. Figures (b) and (c) depict configurations that satisfy cases (ii) and (i) of Lemma 8 respectively.

Case 2: exactly one of S_{1}, S_{2} shares an edge e, while the other shares only a vertex v. If $v \cap e=v$, then (i) applies, and if $v \cap e=\emptyset$, then (ii) holds-see Fig. 9b for an example.

Case 3: both S_{1} and S_{2} share only a vertex; see Fig. 9c. Let v be the vertex of σ_{3} that is not in the facet shared by σ_{3} and σ_{6}. In Fig. 9c v is marked orange. Since σ_{2} is adjacent to σ_{3}, it follows that σ_{2} contains v and three of its four facets contain v. One of these facets is the shared facet with σ_{3}, and we claim that σ_{1} is placed at one of the other two. Indeed, σ_{1} cannot be located at the fourth facet of σ_{2}, since otherwise it would share an edge with σ_{2}, σ_{3} and σ_{6}, which is ruled out by the current case. Thus, $v \in \sigma_{1}$, and a symmetric argument shows that $v \in \sigma_{5}$. It follows that (i) holds.

Now, we can proceed with the inductive step for the configuration from Fig. 8 ff . The problem is that to remove $\left\{\sigma_{1}, \ldots, \sigma_{5}\right\}$, we need two beacons. However, this does not meet our goal of handling at least $3 k$ tetrahedra by placing k beacons, for a $k \geq 1$. If we removed σ_{6} and if σ_{6} had additional children, the remaining dual graph might no longer be connected, and we could not continue with our induction. Thus, we must look at the (additional) subtrees of σ_{6}.

Since there are many possibilities, we wrote a short Python program to generate all the cases. Our program enumerates all rooted, ordered, ternary trees of height at most three. To each such tree, the program repeatedly applies Lemma 7 to prune subtrees. If this results in an empty tree, the case does not need to be considered. If not, we save the remaining tree for manual consideration, eliminating isomorphic copies of the same tree. The source code is in Appendix A. The program leaves us with nine different cases, shown in Fig. 10. In each case, the subtree from Fig. $8 \mathrm{8f}$ is present. The following lemma explains how to place the beacons.

Lemma 9 (Inductive step II). Let P be a three-dimensional polyhedron, with a

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 10: The "nontrivial" configurations of children of σ_{6}. The tree in (a) is a subtree of all configurations. In all cases, σ_{6} has no other children than those shown here. Furthermore, since T is rooted at a leaf node, σ_{6} needs to have an additional parent (except in case (a).
tetrahedral decomposition Σ of size $m \geq 5$. Let T be a spanning tree of the dual graph $D(\Sigma)$, rooted at an arbitrary leaf. Let $T^{\prime} \subseteq T$ be a subtree of T with height 3 for which Lemma 7 cannot be applied; see Fig. 10.

Then, there is a set B of $k \geq 2$ beacons that are vertices in at least $3 k+1$ tetrahedra from T^{\prime}, such that the induced subgraph for B on Σ is connected. Furthermore, we can remove at least $3 k$ tetrahedra, each containing a beacon from B, so that T remains connected and so that at least one remaining tetrahedron contains a beacon from B

Proof. We say that two beacons b_{1} and b_{2} share an edge or are neighbors if a a tetrahedron of Σ contains an edge between the vertices where b_{1} and b_{2} are placed. We go through the cases.

Fig. 10a by Lemma $4($ iii $)$ the sets $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{6}\right\}$ and $\left\{\sigma_{6}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right\}$ each share one vertex, say v_{1} and v_{2}, respectively. If $v_{1} \neq v_{2}$, we set $B=\left\{v_{1}, v_{2}\right\}$. If $v_{1}=v_{2}$, we set $B=\left\{v_{1}, w\right\}$, where w is any of the three other vertices of σ_{6}. If σ_{6} has a parent tetrahedron, the shared facet contains three vertices of σ_{6} and hence at least one beacon from B. Thus, by placing $k=2$ beacons, we can remove the $6=3 k$ tetrahedra $\left\{\sigma_{1}, \ldots, \sigma_{6}\right\}$.

Fig. 10b we have the same situation as in Fig. 10a, except for the additional tetrahedron σ_{7}. We choose B as in Fig. 10a, and we observe that σ_{6} contains
two beacons. Thus, σ_{7} contains at least one beacon from B. Hence, by placing $k=2$ beacons, we can remove the $7>3 k$ tetrahedra $\left\{\sigma_{1}, \ldots, \sigma_{7}\right\}$.

Fig. $\mathbf{1 0 c}$. we apply the same argument as for Fig. 10b, observing that σ_{8} must also contain a beacon from B. Thus, by placing $k=2$ beacons, we can remove the $8>3 k$ tetrahedra σ_{1} to σ_{8}.

Fig. 10d by Lemma 4 (ii), the set $\left\{\sigma_{6}, \sigma_{7}, \sigma_{8}\right\}$ shares an edge e. We apply Lemma 8 to $\left\{\sigma_{1}, \ldots, \sigma_{6}\right\}$. This gives two cases. Case (i): $\left\{\sigma_{1}, \ldots, \sigma_{5}\right\}$ share a vertex v. As v is in σ_{3}, and as σ_{3} shares a facet with σ_{6}, three neighboring vertices of v are in σ_{6}. The edge e contains at least one of those three neighbors. We call it w. We set $B=\{v, w\}$. Case (ii): we obtain a vertex v and an edge e^{\prime} in σ_{6}, with $v \cap e^{\prime}=\emptyset$. This covers three vertices of σ_{6}, so the edge e shares at least one vertex with v or with e^{\prime}. To obtain B, we choose two vertices of σ_{6} such that v, e^{\prime}, and e each contain at least one. In both cases, the beacons in B are neighbors. We place $k=2$ beacons, and we remove the $7>3 k$ tetrahedra $\left\{\sigma_{1}, \ldots, \sigma_{5}, \sigma_{7}, \sigma_{8}\right\}$.

Fig. 10e by Lemma 4 (ii), the sets $\left\{\sigma_{6}, \sigma_{7}, \sigma_{8}\right\}$ and $\left\{\sigma_{6}, \sigma_{9}, \sigma_{10}\right\}$ share edges e_{1} and e_{2}, respectively. We apply Lemma 8 to $\left\{\sigma_{1}, \ldots, \sigma_{6}\right\}$. This again gives two cases. Case (i): $\left\{\sigma_{1}, \ldots, \sigma_{5}\right\}$ share a vertex v. We set $B=\left\{v, w_{1}, w_{2}\right\}$ such that w_{1} and w_{2} are vertices of $\sigma_{6},|B|=3$, and both edges e_{1} and e_{2} contain at least one beacon. As in Fig. 10d, v is a neighbor of w_{1} or w_{2}. Furthermore, w_{1} and w_{2} are neighbors because they are vertices of σ_{6}. Case (ii): we obtain a vertex v and an edge e in σ_{6}, with $v \cap e=\emptyset$. We set $B=\left\{v, w_{1}, w_{2}\right\}$, where w_{1} and w_{2} are vertices of σ_{6}, such that $|B|=3$ and such that all edges e, e_{1}, and e_{2} contain at least one beacon. Since all beacons lie in σ_{6}, they are mutual neighbors. In both cases, we place $k=3$ beacons such that every tetrahedron contains at least one. We remove the $9=3 k$ tetrahedra $\left\{\sigma_{1}, \ldots, \sigma_{10}\right\} \backslash\left\{\sigma_{6}\right\}$.

Fig. 10 f we apply Lemma 8 to $\left\{\sigma_{1}, \ldots, \sigma_{6}\right\}$ and to $\left\{\sigma_{6}, \ldots, \sigma_{11}\right\}$. There are several cases. Case (i): each of $\left\{\sigma_{1}, \ldots, \sigma_{5}\right\}$ and $\left\{\sigma_{7}, \ldots, \sigma_{11}\right\}$ share a vertex, say v_{1} and v_{2}, respectively. By the argument from Fig. 10d, three neighboring vertices of v_{1} and three neighboring vertices of v_{2} are vertices of σ_{6}. Thus, there is a vertex v of σ_{6} that is a neighbor of v_{1} and of v_{2}. We set $B=\left\{v, v_{1}, v_{2}\right\}$. Case (ii): without loss of generality, the set $\left\{\sigma_{1}, \ldots, \sigma_{5}\right\}$ shares a vertex v_{1} and the set $\left\{\sigma_{6}, \ldots, \sigma_{11}\right\}$ has a vertex v_{2} and an edge e in σ_{6}, with $v_{2} \cap e=\emptyset$. Then, at least one of the three vertices of σ_{6} that are neighbors of v_{1} is covered by $v_{2} \cup e$. We set $B=\left\{v_{1}, v_{2}, w\right\}$, where w is an endpoint of e. Case (iii): $\left\{\sigma_{1}, \ldots, \sigma_{6}\right\}$ have a vertex v_{1} and an edge e_{1} in σ_{6} and $\left\{\sigma_{6}, \ldots, \sigma_{11}\right\}$ have a vertex v_{2} and an edge e_{2} in σ_{6}. We choose for B three vertices of σ_{6} such that v_{1}, v_{2}, e_{1}, and e_{2} each contain at least one beacon. In all cases, we place $k=3$ beacons, so that B is connected and every tetrahedron in $\left\{\sigma_{1}, \ldots, \sigma_{11}\right\}$ contains at least one beacon. We remove $10>3 k$ tetrahedra: all but σ_{6}.

Fig. 10 g ; this is similar to Fig. 10 f We only describe how to ensure that B contains a vertex of σ_{12}. In Case (i), v can be placed at two vertices. We choose the vertex that lies in σ_{12}. This is always possible, as σ_{12} contains three of the four vertices of σ_{6}. In Case (ii), we choose w as an endpoint of e that lies in σ_{12}. The same argument as before applies. In Case (iii), B must contain a vertex of σ_{12}, since three beacons are at vertices of σ_{6}. Thus, by placing $k=3$ beacons,
we remove $11>3 k$ tetrahedra: all but σ_{6}.
Fig. 10h; initially, we choose a set of beacons B^{\prime} as in Fig. 10f, at first ignoring σ_{12} and σ_{13}. By Lemma 4|(ii), $\left\{\sigma_{6}, \sigma_{12}, \sigma_{13}\right\}$ shares an edge e^{\prime}. If e^{\prime} is covered by B^{\prime}, we set $B=B^{\prime}$. If not, we set $B=B \cup\{w\}$, where w is an endpoint of e^{\prime}. Thus, by placing $k \leq 4$ beacons, we may remove $12 \geq 3 k$ tetrahedra: all but σ_{6}.

Fig. 10iz let $S_{1}=\left\{\sigma_{1}, \ldots, \sigma_{6}\right\}, S_{2}=\left\{\sigma_{6}, \ldots, \sigma_{11}\right\}, S_{3}=\left\{\sigma_{6}, \sigma_{12}, \ldots, \sigma_{16}\right\}$. Also, let $S_{1}^{\prime}=S_{1} \backslash\left\{\sigma_{6}\right\}, S_{2}^{\prime}=S_{2} \backslash\left\{\sigma_{6}\right\}$, and $S_{3}^{\prime}=S_{3} \backslash\left\{\sigma_{6}\right\}$. We apply Lemma 8 to S_{1}, to S_{2}, and S_{3}. There are several cases. Case (i): $S_{1}^{\prime}, S_{2}^{\prime}$, and S_{3}^{\prime} each share a vertex, say v_{1}, v_{2}, and v_{3}. By the argument of Fig. 10d each of v_{1}, v_{2}, v_{3} has three neighbors that are vertices of σ_{6}. Thus, they have one common neighbor vertex w in σ_{6}. We set $B=\left\{v_{1}, v_{2}, v_{3}, w\right\}$. Case (ii): without loss of generality, S_{1}^{\prime} and S_{2}^{\prime} each share a common vertex, say v_{1} and v_{2}, and for S_{3} we obtain a vertex v_{3} and an edge e_{3} in σ_{6}, with $e_{3} \cap v_{3}=\emptyset$. We set $B=\left\{v_{1}, v_{2}, v_{3}, w\right\}$, where w is an endpoint of e. Since v_{3} and w are in σ_{6}, it follows that v_{1} and v_{2} have a neighboring beacon in σ_{6}. Case (iii): without loss of generality, S_{1}^{\prime} has a common vertex v_{1} and S_{2} and S_{3} each have a vertex v_{2} and v_{3} as well as an edge e_{2} and e_{3}, all four in σ_{6}. We place a beacon at v_{1} and three beacons at vertices of σ_{6} such that v_{2}, v_{3}, and both edges e_{1} and e_{2} contain at least one beacon. Since three neighbors of v_{1} are in σ_{6}, the beacon at v_{1} has at least one beacon neighbor in σ_{6}. Case (iv): S_{1}, S_{2}, and S_{3} each have a vertex and an edge in σ_{6}. We place three beacons so that all of them are covered. In all cases, we place $k \leq 4$ beacons to remove $15>3 k$ tetrahedra: all but σ_{6}.

We are now ready to prove Theorem 5 .
Proof (of Theorem 5). We use induction on the size of the tetrahedral decomposition. The base case is in Lemma 6. Next, we assume that the inductive hypothesis (Theorem 5) holds for all polyhedra that have a tetrahedral decomposition of size less than m. Consider a spanning tree T of the dual graph $D(\Sigma)$ of the tetrahedral decomposition Σ, rooted at an arbitrary leaf. Let σ_{1} be a deepest leaf. If σ_{1} is not unique, choose one with the largest number of siblings, breaking ties arbitrarily. We can then apply either Lemma 7 or Lemma 9 , to obtain the following:
(i) we have placed a set B of $k \geq 1$ beacons at vertices of Σ, and we have removed at least $3 k$ tetrahedra;
(ii) every removed tetrahedron contains at least one beacon in B;
(iii) the induced subgraph on B on the vertices and edges of Σ is connected;
(iv) there is a beacon $b \in B$ in the remaining polyhedron P^{\prime}.

By (i), the new polyhedron P^{\prime} has a tetrahedral decomposition of size $m^{\prime} \leq m-3 k<m$. Thus, by the inductive hypothesis, we need

$$
k^{\prime}=\left\lfloor\frac{m^{\prime}+1}{3}\right\rfloor \leq\left\lfloor\frac{m-3 k+1}{3}\right\rfloor=\left\lfloor\frac{m+1}{3}\right\rfloor-k
$$

beacons to route between any pair of points in P^{\prime}. Since $k^{\prime}+k=\lfloor(m+1) / 3\rfloor$, we do not exceed the claimed amount of beacons. By the inductive hypothesis and (iv), it follows in particular that we can route from any point in P^{\prime} to the beacon $b \in B$ and vice versa. From (ii)] we know that for every point p in the removed tetrahedra, there is a beacon $b^{\prime} \in B$ such that p attracts b^{\prime} and b^{\prime} attracts p. Finally, due to (iii), we can route between all beacons in B. In conclusion, we can route between any pair of points in P. This completes the inductive step.

Observation 10. Theorem 5 also implies that $\max \{1,\lfloor(m+1) / 3\rfloor\}$ beacons are sufficient to guard a polyhedron with a tetrahedral decomposition of size m. We need at least one beacon to cover the polyhedron, and placing them as in the previous proof is enough.

4. A Lower Bound for Beacon-based Routing

Our next goal is to obtain a lower bound for the number of beacons needed to route in three-dimensional polyhedra. We first give an alternative proof for the lower bound of $\lfloor n / 2\rfloor-1$ beacons for routing in two dimensions. Our construction is similar to the one by Shermer 18 for orthogonal polygons. We present a family of spiral-shaped polygons for which we will then argue that $\lfloor n / 2\rfloor-1$ beacons are needed for routing between a specific pair of points.

Definition 11. Given $c \in \mathbb{N}_{>0}$ the c-corner spiral polygon is a simple polygon with $n=2 c+2$ vertices $s=r_{0}, r_{1}, \ldots, r_{c}, t=r_{c+1}, q_{c}, q_{c-1}, \ldots, q_{1}$, in clockwise order. The polar coordinates of the vertices are as follows:

- $r_{k}=(\lfloor k / 3\rfloor+1 ; k \cdot 2 \pi / 3)$, for $k=0, \ldots, c+1$; and
- $q_{k}=(\lfloor k / 3\rfloor+1.5 ; k \cdot 2 \pi / 3)$, for $k=1, \ldots, c$.

The trapezoids $\triangle r_{k} q_{k} q_{k+1} r_{k+1}$, for $k=1, \ldots, c-1$ and the two triangles $\triangle s r_{1} q_{1}$ and $\triangle t r_{c} q_{c}$ are called the hallways.

An example for $c=5$ is shown in Fig. 11. with a placement of five beacons to route from s to t.

Lemma 12 (Two-dimensional lower bound). Let $c \in \mathbb{N}_{>0}$ and let P be a ccorner spiral polygon. Let $B \subset P$ be a set of beacons that lets us route from s to t. Then, we have $|B| \geq c$.

Proof. We shoot three rays from the origin with angles $\pi / 3 \pi, \pi$, and $5 \pi / 3$; see Fig. 11. Each edge of P is intersected by exactly one ray. For $k=1, \ldots, c+1$, the intersection of a ray with the edge $r_{k-1} r_{k}$ is called a_{k} and the intersection with the edge $q_{k-1} q_{k}$ is called b_{k}. We divide P into $c+2$ subpolygons C_{0}, \ldots, C_{c+1} by drawing the line segments $a_{k} b_{k}$, for $k=1, \ldots, c+1$. This gives two triangles C_{0} and C_{c+1}, with s and t, respectively, and c subpolygons C_{1}, \ldots, C_{c}, called

Figure 11: A 5-corner spiral polygon for which five beacons (marked in red) are necessary to route from s to t.

Figure 12: A more detailed look at the parts of the spiral polygon.

Figure 13: A 5-corner spiral polygon which shows the possible locations of the needed beacons to route through each corner when routing from s to t.
the complete corners of P; see Fig. 12a. We show that for $k=1, \ldots, c$, there must be at least one beacon from B in $C_{k} \backslash\left(a_{k} b_{k} \cup a_{k+1} b_{k+1}\right)$.

Suppose we route a point-shaped object p from s to t with the help of B. Fix a complete corner $C_{k}, 1 \leq k \leq c$, as in Fig. 12b. Consider the last time the object p crosses $a_{k} b_{k}$. At this point, p is attracted by a beacon $b \in B$, and as we require that p moves all the way to b, the beacon b must lie in a complete corner C_{ℓ}, with $\ell \geq k$ (and b is not on the line segment $a_{k} b_{k}$). In fact, b can only be in C_{k} or in C_{k+1}, since otherwise it is clearly not possible that p reaches b along an attraction path. Thus, for p to reach b, it must be the case that either $a_{k} b_{k}$ is directly visible from b, or that the closest point to b on $r_{k} a_{k}$ is r_{k}. Otherwise, p would get stuck on $r_{k} a_{k}$, see Fig. 12b. The hatched region A_{k} in Fig. 12b shows the possible positions of b under these constraints. If this region is disjoint from $a_{k} b_{k} \cup a_{k+1} b_{k+1}$ the claim follows immediately.

In Fig. 13 we can see all A_{k} for $1 \leq k \leq c+1$ for $c=5$. Clearly none of the A_{k} intersect $a_{k} b_{k}$. We show that none of the A_{k} intersect $a_{k+1} b_{k+1}$ for each of the three directions:
(i) $k=1,4,7, \ldots$: The A_{k} are congruent since the angle α_{k} is always exactly
$\pi / 3$. Hence, as can be observed in Fig. 13 , for increasing k the distance from A_{k} to $a_{k+1} b_{k+1}$ increases. Since A_{1} does not intersect $a_{2} b_{2}$ the same holds true for all $k=1,4,7, \ldots$.
(ii) $k=2,5,8, \ldots$: The boundary edge of A_{k} which could intersect $a_{k+1} b_{k+1}$ is always horizontal. As long as b_{k+1} lies above this boundary edge no intersection is possible. This is the case for A_{2} (as visible in Fig. 13). Since the length of the hallways increases and the angle α_{k} decreases for increasing k it is always the case that b_{k+1} lies above the horizontal bounding edge of A_{k}. Hence, none of the A_{k} intersect $a_{k+1} b_{k+1}$ for $k=2,5,8, \ldots$.
(iii) $k=3,6,9, \ldots: A_{3}$ clearly does not intersect $a_{4} b_{4}$. However, as k grows, the angle α_{k} increases towards $\pi / 3$ and the A_{k} grow towards a shape that is congruent with A_{1}. Since the hallways become larger and larger, even putting a rotated copy of A_{1} at A_{3} would not give an intersection with $a_{4} b_{4}$.

It follows that $|B| \geq c$.
We now extend this proof to three dimensions. For this, we first define a c-corner spiral polyhedron.

Definition 13. Given $c \in \mathbb{N}_{>0}$ the c-corner spiral polyhedron is a polyhedron with $n=3 c+2$ vertices $s=r_{0}, r_{1}, \ldots, r_{c}, t=r_{c+1}, q_{1}, \ldots, q_{c}$, and z_{1}, \ldots, z_{c}. The coordinates of s, t, q_{k}, and r_{k}, for $k=1, \ldots, c$, are the same as in Definition 11, with the z-coordinate set to 0 . The z_{k} are positioned above the corresponding r_{k}, i.e., $z_{k}=r_{k}+\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, for $k=1, \ldots, c$. The edges and facets are given by the following tetrahedral decomposition:

- The start and end tetrahedra are $\Delta r_{1} q_{1} z_{1} s$ and $\Delta r_{c} q_{c} z_{c} t$.
- The hallway between two triangles $\triangle r_{k} q_{k} z_{k}$ and $\triangle r_{k+1} q_{k+1} z_{k+1}$ consists of the three tetrahedra $\triangle r_{k} q_{k} z_{k} r_{k+1}, \Delta r_{k+1} q_{k+1} z_{k+1} q_{k}$, and $\triangle q_{k} z_{k} r_{k+1} z_{k+1}$, for $k=1, \ldots, c-1$.

For $c=1$, the c-corner spiral polyhedron has two tetrahedra. For $c>1$, we add $c-1$ hallways, each with three tetrahedra. This means that a c-corner spiral polyhedron has a tetrahedral decomposition of size $m=3 c-1$. Thus, by Definition 13 , the number of tetrahedra in terms of the number of vertices is $m=3 \cdot(n-2) / 3-1=n-3$, the smallest number possible for a given n.

Lemma 14 (Lower bound). Let $c \in \mathbb{N}_{>0}$ and let P be a c-corner spiral polyhedron. Let B be a set of beacons that lets us route from s to t. Then, $|B| \geq c$.

Proof. We show that a projection B^{\prime} of B onto the $x y$-plane maintains the attraction regions. It then follows from Lemma 12 that $|B|=\left|B^{\prime}\right| \geq c$.

Note that the only reflex edges in P are the edges $e_{k}=r_{k} z_{k}$ for all $k=1, \ldots, c$. Look at a beacon $b \in B$ and its projection $b^{\prime} \in B^{\prime}$. If a point p is visible from b it must be visible from b^{\prime} as well: Since the hallways are convex objects and
the only edges that could prevent visibility are the vertical reflex edges $r_{k} z_{k}$ a vertical translation of b to b^{\prime} cannot inhibit visibility.

If a point p is attracted by b (but not visible from b) it must be attracted by b^{\prime} as well. Each such attraction goes through exactly one reflex edge: at least one since p is not visible and at most one since two reflex edges in P together form angles larger than π. The movement of p is a movement (possibly of length zero) until it hits a face $f_{k}=r_{k} z_{k} r_{k+1} z_{k+1}$ at point q. It then slides along f_{k} until it hits one of the boundary edges w.l.o.g. $e_{k}=r_{k} z_{k}$ at point u. It then moves directly towards b.

Since f_{k} is orthogonal to the $x y$-plane if p is attracted by b^{\prime} it will hit f_{k} at a point q^{\prime} which can be obtained by moving q down along the z-axis. Hence the point then slides from q^{\prime} along f_{k} towards e_{k} where it reaches at a point u^{\prime} which (again due to e_{k} being orthogonal to the $x y$-plane) can be obtained by moving u down along the z-axis. It then moves directly towards b^{\prime}.

Thus the set B can only attract what B^{\prime} can. Since B^{\prime} lies in the $x y$-plane and a cross section of P along the $x y$-plane gives exactly a c-corner spiral polygon P^{\prime}. By Lemma 12 we obtain then that $|B|=\left|B^{\prime}\right| \geq c$, as claimed.

5. A Tight Bound for Beacon-based Routing

We combine the results from Section 3 and Section 4 into a tight bound:
Theorem 15. Let P be a three-dimensional polyhedron, and m the smallest size of a tetrahedral decomposition of P. Then, it is always sufficient and sometimes necessary to place $\lfloor(m+1) / 3\rfloor$ beacons to route between any pair of points in P.

Proof. The upper bound was shown in Theorem5. For the lower bound, we consider the c-corner spiral polyhedron P_{c} with $c=\lfloor(m+1) / 3\rfloor$. By Definition 13 , P_{c} has a smallest tetrahedral decomposition of size $m^{\prime}=3 c-1$. Furthermore, by Lemma 14, we need at least c beacons to route in P_{c}. This also shows that P_{c} does not have a tetrahedral decomposition with size strictly less than m^{\prime}, since otherwise Theorem 5 would yield a contradiction.

Due to the rounding we might have $m^{\prime}=m-1$ or $m-2$. We then look at the $(c+1)$-corner spiral P_{c+1} that consists of three tetrahedra more than P_{c}. More specifically, the last hallway of P_{c+1} consists of the three tetrahedra $\sigma_{1}=\Delta r_{c} q_{c} z_{c} r_{c+1}, \sigma_{2}=\Delta q_{c} z_{c} r_{c+1} z_{c+1}$, and $\sigma_{3}=\Delta q_{c} r_{c+1} q_{c+1} z_{c+1}$. The tetrahedron σ_{1} is already present in P_{c}. Hence, for $m^{\prime}=m-1$, we add σ_{2}, and for $m^{\prime}=m-2$, we add σ_{2} and σ_{3} to P_{c}. Since for each additional tetrahedron we also need to add one additional vertex $\left(z_{c+1}\right.$ for σ_{2} and q_{c+1} for $\left.\sigma_{3}\right)$, there is no decomposition of the resulting polyhedron into less than m tetrahedra.

Additionally, the resulting polyhedron also needs at least c beacons because the added tetrahedra cannot lower the number of beacons needed.

6. Conclusion

We have shown that, given a tetrahedral decomposition of a polyhedron P of size m, we can place $\lfloor(m+1) / 3\rfloor$ beacons to route between any pair of points
in P. We also constructed a family of polyhedra where this is also necessary.
A lot of questions that have been studied in two dimensions remain open for the three-dimensional case. For example, the complexity of finding an optimal beacon set to route between a given pair of points remains open. Additional open questions concern the efficient computation of attraction regions (computing the set of all points attracted by a single beacon) and of beacons kernels (all points at which a beacon can attract all points in the polyhedron).

Furthermore, Cleve 10] showed that not all polyhedra can be covered by vertex beacons and Aldana-Galván et al. [1,2] showed that this is even true for orthogonal polyhedra. Given a polyhedron P with a tetrahedral decomposition of size m, it remains open whether it is possible to guard P with fewer than $\max \{1,\lfloor(m+1) / 3\rfloor\}$ beacons as in Observation 10 .

References

[1] I. Aldana-Galván, J. L. Álvarez Rebollar, J. C. Catana Salazar, N. Marín Nevárez, E. Solís Villarreal, J. Urrutia, and C. Velarde. Beacon coverage in orthogonal polyhedra. In Proc. 29th Canad. Conf. Comput. Geom. (CCCG), pages 166-171, 2017.
[2] I. Aldana-Galván, J. L. Álvarez-Rebollar, J. C. Catana-Salazar, N. MarínNevárez, E. Solís-Villarreal, J. Urrutia, and C. Velarde. Covering orthotrees with guards and beacons. In Proc. 17th Spanish Meeting Comput. Geom. (EGC), pages 29-32, 2017.
[3] S. W. Bae, C.-S. Shin, and A. Vigneron. Tight bounds for beacon-based coverage in simple rectilinear polygons. In Proc. 12th Lat. Am. Symp. Theor. Inf. (LATIN), pages 110-122, 2016.
[4] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. Computing in Euclidean geometry, 4:47-123, 1995.
[5] M. Biro. Beacon-Based Routing and Guarding. PhD thesis, State University of New York at Stony Brook, 2013.
[6] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beaconbased routing and coverage. In Proc. 21st Fall Workshop Comput. Geom. (FWCG), 2011.
[7] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Combinatorics of beacon-based routing and coverage. In Proc. 25th Canad. Conf. Comput. Geom. (CCCG), pages 129-134, 2013.
[8] M. Biro, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon-based algorithms for geometric routing. In Proc. 13th Int. Symp. Algorithms Data Struct. (WADS), pages 158-169, 2013.
[9] B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-case optimal algorithm. SIAM J. Comput., 13(3):488-507, 1984.
[10] J. Cleve. Combinatorics of beacon-based routing and guarding in three dimensions. Master's thesis, Freie Universität Berlin, 2017.
[11] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.
[12] I. Kostitsyna. Personal communication. 2019.
[13] I. Kostitsyna, B. Kouhestani, S. Langerman, and D. Rappaport. An optimal algorithm to compute the inverse beacon attraction region. In Proc. 34 th Int. Symp. Comput. Geom. (SoCG), pages 55:1-14, 2018.
[14] B. Kouhestani. Efficient algorithms for beacon routing in polygons. PhD thesis, Queen's University, Kingston, Ontario, 2013.
[15] N. J. Lennes. Theorems on the simple finite polygon and polyhedron. Am. J. Math., 33(1/4):37, 1911.
[16] J. O'Rourke. Art gallery theorems and algorithms. Oxford University Press, 1987.
[17] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional nonconvex polyhedra. Discrete Comput. Geom., 7(3):227-253, 1992.
[18] T. C. Shermer. A combinatorial bound for beacon-based routing in orthogonal polygons. In Proc. ${ }^{2} 7$ th Canad. Conf. Comput. Geom. (CCCG), pages 213-219, 2015.

Appendix A. Program Code to Generate Trees

```
#!/usr/bin/env python3
"""Generate all dual graph configurations we need to look at."""
from itertools import product
from graphviz import Digraph
#############################################################################
# Tree structure.
#############################################################################
class Node:
    """A tree structure which allows pruning of unneeded subtrees."""
```



```
    # General tree structure.
```



```
    def __init__(self):
        """A new node is simply a leaf."""
        self.nodes = []
    def add(self, n=1):
        """Append n additional children and return self."""
        for - in range(n):
            self.nodes.append(Node())
```

```
    return self
```

 return self
 def
def
append(self, node):
append(self, node):
"""Append a node or an iterable of nodes and return self."""
"""Append a node or an iterable of nodes and return self."""
try:
try:
for n in node:
for n in node:
self.nodes.append(n)
self.nodes.append(n)
except TypeError
except TypeError
self.nodes.append(node)
self.nodes.append(node)
return self
return self
def is_leaf(self)
def is_leaf(self)
"""Return whether this node is a leaf, i.e., has no children."""
"""Return whether this node is a leaf, i.e., has no children."""
feturn not self.nodes

```
    feturn not self.nodes
```



```
# Graphviz
```

```
# Graphviz
```



```
def to_dot(self, graph=None, prefix=''):
```

def to_dot(self, graph=None, prefix=''):
"""Return a Graphviz representation of the tree."""
"""Return a Graphviz representation of the tree."""
if graph is None:
if graph is None:
graph = Digraph()
graph = Digraph()
self._dot_recursion(graph, 1, prefix)
self._dot_recursion(graph, 1, prefix)
return graph
return graph
def _dot_recursion(self, graph, current, prefix=''):
def _dot_recursion(self, graph, current, prefix=''):
"""Recursively create Graphviz tree."""
"""Recursively create Graphviz tree."""
graph.node(prefix + str(current), label=str(current))
graph.node(prefix + str(current), label=str(current))
this_number = current
this_number = current
current = current + 1
current = current + 1
for child in self.nodes:
for child in self.nodes:
current, child_number = child._dot_recursion(graph, current,
current, child_number = child._dot_recursion(graph, current,
prefix)
prefix)
graph.edge(prefix + str(this_number), prefix + str(child_number))
graph.edge(prefix + str(this_number), prefix + str(child_number))
return current, this_number

```
    return current, this_number
```



```
# Pruning of "easy" cases.
```

```
# Pruning of "easy" cases.
```



```
    prune(self):
```

 prune(self):
 """Remove subtrees that are easily removed."""
 """Remove subtrees that are easily removed."""
 # First try to remove subtrees.
 # First try to remove subtrees.
 if self._prune() is None:
 if self._prune() is None:
 return None
 return None
 # Call prune() for all children and filter out children that were.
 # Call prune() for all children and filter out children that were.
 # removed
 # removed
 self.nodes = list(filter(lambda x: x is not None,
 self.nodes = list(filter(lambda x: x is not None,
 map(Node.prune, self.nodes)))
 map(Node.prune, self.nodes)))
 # Sort children after pruning to have a canonical structure.
 # Sort children after pruning to have a canonical structure.
 self.nodes.sort()
 self.nodes.sort()
 # Try pruning easy subtrees again. Maybe pruning the children created
 # Try pruning easy subtrees again. Maybe pruning the children created
 # a prunable configuration again.
 # a prunable configuration again.
 return self._prune()
 return self._prune()
 def _prune(self):
def _prune(self):
"""Remove subtrees that are easily removed."""
"""Remove subtrees that are easily removed."""
if len(self.nodes) == 3:
if len(self.nodes) == 3:
if all(n.is_leaf() for n in self.nodes):
if all(n.is_leaf() for n in self.nodes):
\# Case (i): Figure 5.4(a): This is s2
\# Case (i): Figure 5.4(a): This is s2
\# Three children that are leaf nodes: Remove all of them.
\# Three children that are leaf nodes: Remove all of them.
self.nodes = []
self.nodes = []
elif all(len(n.nodes) == 1 and n.nodes[0].is_leaf()
elif all(len(n.nodes) == 1 and n.nodes[0].is_leaf()
for n in self.nodes):

```
                    for n in self.nodes):
```

```
            # Case (iii)(3): Figure 5.4(e): This is s3
            # Three children with one child leaf each: Remove two
            #
            self.nodes.pop()
    if len(self.nodes) == 2:
        if all(n.is_leaf() for n in self.nodes):
            # Case (ii): Figure 5.4(b): This is s2
            # Two children that are leaf nodes: Remove both including
            # the parent node.
            return None
    if len(self.nodes) == 1:
    if len(self.nodes[0].nodes) == 1:
            if self.nodes[0].nodes[0].is_leaf ():
                # Case (iii)(1): Figure 5.4(c): This is s3
                # A chain of three nodes: Remove all of them.
                return None
    if len(self.nodes) >= 2:
        leaves = [n for n in self.nodes if n.is_leaf()]
        leaves2 = [n for n in self.nodes if len(n.nodes) == 1 and
                    n.nodes[0].is_leaf()]
        if leaves and leaves2:
            # Case (iii)(2): Figure 5.4(d): This is s3
            # One leaf child and one child with a single leaf child:
            # Remove both children.
            self.nodes.remove(leaves [0])
            self.nodes.remove(leaves2[0])
        # Return self to indicate that the node itself is not to be removed.
        return self
```



```
# Make trees comparable.
```



```
def __eq__(self, other):
    """
    Compare equality of two nodes.
    Two nodes are equal if they have the same number of children and
    every child is equal to the respective child of the other node.
    """
    if other is None:
        return False
    if len(other.nodes) != len(self.nodes):
            return False
    for this, that in zip(self.nodes, other.nodes):
            if this != that:
            return False
    return True
def __lt__(self, other):
    Compare whether a node is smaller than another node.
    A node is smaller then another node if it has more direct children or
    if any of the children is smaller than the respective other child.
    " ""
    if len(self.nodes) != len(other.nodes):
        return len(self.nodes) > len(other.nodes)
    for this, that in zip(self.nodes, other.nodes):
        if this < that:
            return True
        if that < this:
            return False
    return True
```



```
    String representation and hash value for uniqueness.
```



```
    def __str__(self):
    """Generate a bracket term representing the tree."""
    return '(' + ','join(str(n) for n in self.nodes) + ')'
    def __repr__(self):
    """Terminal representation."""
    return str(self)
    def __hash__(self):
    """Hash value for uniqueness."""
    return hash(str(self))
#############################################################################
# Generate all trees with certain maximum depth.
#############################################################################
def all_trees(depth):
        Yield all trees with a given maximum depth.
        The trees are created recursively by appending combinations of trees of
        depth-1 to a node.
        " " "
        if depth == 1:
            # Create a node with 0, 1, 2, and 3 children.
            for i in range(4):
            yield Node().add(i)
        else:
            # Append 0, 1, 2, or 3 children.
            for number_of_children in range(4):
                # Create as many iterators of the next lower depth as there
            # should be children appended.
            next_level_iterators = []
            for _ in range(number_of_children):
                    next_level_iterators.append(all_trees(depth - 1))
                # Combine all possible combinations of the iterators and add them
            # to a new node.
            for subtrees in product(*next_level_iterators):
                    yield Node(). append(subtrees)
def iterator_len(iterator):
        """
    Return the number of elements in an iterator
    The iterator is consumed by calling this function.
    """
    length = 0
    for _ in iterator:
            length += 1
    return length
#############################################################################
# Main program.
#############################################################################
if __name__ == ' __main__':
    # The maximum depth of the tree is 3
    depth = 3
    number_of_combinations = iterator_len(all_trees(depth))
    # Start with the first tree
    current = 1
```

```
# A container for all distinct non-prunable trees
trees = set()
# Iterate through all different trees of maximum depth
for tree in all_trees(depth):
        # Prune "easy" cases
        tree = tree.prune()
        # Add tree to set of trees if it was not pruned completely
        if tree is not None:
            trees.add(tree)
        # Debug output
        print('\r{percent:. 2f}% ({current} / {all}) - trees: {trees}'
            .format(percent=100 * current / number_of_combinations,
                current=current,
                    all=number_of_combinations,
                trees=len(trees)),
            end=',, flush=True)
    current += 1
# Sum up the number of trees
print()
print(len(trees), 'trees')
# Create a document with all non-prunable trees
g = Digraph()
prefix = 1
for tree in trees:
    tree.to_dot(g, str(prefix) + '_')
    prefix += 1
g.render('trees')
```


[^0]: *Supported in part by DFG grant MU 3501/1 and ERC StG 757609.
 ${ }^{\star \star}$ A preliminary version appeared as J. Cleve and W. Mulzer. Combinatorics of Beacon-based Routing in Three Dimensions. Proc. 13th LATIN, pp. 346-360.
 (C) 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

 Email addresses: jonascleve@inf.fu-berlin.de (Jonas Cleve), mulzer@inf.fu-berlin.de (Wolfgang Mulzer)

[^1]: ${ }^{1}$ A planar polygon is orthogonal if all its edges are parallel to the x - or the y-axis.

[^2]: ${ }^{2}$ An orthotree is an orthogonal polyhedron made out of boxes that are glued face to face and whose dual graph is a tree.
 ${ }^{3}$ An orthotree is well-separated if its dual graph has the property that all neighbors of a vertex with degree strictly greater than 2 have degree at most 2 .
 ${ }^{4}$ This issue and a possible fix have also been discovered by Tom Shermer, a fact personally communicated to us by Irina Kostitsyna 12, but as far as we know, no updated version of the proof has been published to date.

[^3]: ${ }^{5}$ We follow the notation of the original work 7 .

[^4]: ${ }^{6}$ A diagonal is a line segment whose endpoints are vertices of P and whose relative interior lies in the interior of P.

