
Combinatorics of Beacon-based Routing in Three
Dimensions?,??

Jonas Cleve, Wolfgang Mulzer

Institut für Informatik, Freie Universität Berlin, Berlin, Germany

Abstract

A beacon b ∈ Rd is a point-shaped object in d-dimensional space that can exert
a magnetic pull on any other point-shaped object p ∈ Rd. This object p then
moves greedily towards b. The motion stops when p gets stuck at an obstacle
or when p reaches b. By placing beacons inside a d-dimensional polyhedron
P , we can implement a scheme to route point-shaped objects between any two
locations in P . We can also place beacons to guard P , which means that any
point-shaped object in P can reach at least one activated beacon.

The notion of beacon-based routing and guarding was introduced in 2011 by
Biro et al. [FWCG’11]. The two-dimensional setting is discussed in great detail
in Biro’s 2013 PhD thesis [SUNY-SB’13].

Here, we consider combinatorial aspects of beacon routing in three dimensions.
We show that b(m+ 1)/3c beacons are always sufficient and sometimes necessary
to route between any two points in a given polyhedron P , where m is the smallest
size of a tetrahedral decomposition of P . This is one of the first results to show
that beacon routing is also possible in higher dimensions.

Keywords: beacon routing, three dimensions, polytopes

1. Introduction

Visibility in the presence of obstacles is a classic notion in combinatorial and
computational geometry [11]. Given a simple polygon P in the plane, two points
p and q in P can see each other if and only if the line segment between p and q
lies in P (considered as a closed region). The visibility region of a point p ∈ P
consists of all points q ∈ P such that p and q can see each other. These basic

?Supported in part by DFG grant MU 3501/1 and ERC StG 757609.
??A preliminary version appeared as J. Cleve and W. Mulzer. Combinatorics of Beacon-based

Routing in Three Dimensions. Proc. 13th LATIN, pp. 346–360.
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/.
Email addresses: jonascleve@inf.fu-berlin.de (Jonas Cleve),

mulzer@inf.fu-berlin.de (Wolfgang Mulzer)

Preprint submitted to Elsevier May 26, 2020

ar
X

iv
:1

71
2.

07
41

6v
2

 [
cs

.C
G

]
 2

3
M

ay
 2

02
0

b1

b2

b1

b2

Figure 1: Attraction is not symmetric. In this two-dimensional example b1 attracts b2 (left)
but b2 does not attract b1 (right).

definitions and their variants have spawned an active subarea of computational
geometry, with whole textbooks devoted to it [11,16].

In 2011, Biro et al. [6] introduced the concept of beacon-based visibility, where
the objects take a more active role. A beacon b ∈ Rd is a point-shaped object in
d-dimensional space. The beacon b can be enabled or disabled. Once b is enabled,
it exerts a magnetic pull on any other point-shaped object p in Rd. Then, the
object p moves in the direction that most rapidly decreases the distance between
b and p. In the simplest case, this motion proceeds along the line segment pb.
If p encounters an obstacle that blocks the direct path along pb, then p slides
along the boundary of the obstacle in the direction that most rapidly decreases
the distance to b. If this is not possible, the motion ends, and we say that p gets
stuck. If p does not get stuck, then it reaches b, and we say that p is attracted by
b. See Fig. 1 for examples. The attraction region of b consists of all points that
are attracted by b. This is an extension of classic visibility: the visibility region
of b is a subset of the attraction region of b. However, unlike classic visibility,
beacon attraction is not symmetric. Thus, it makes also sense to consider the
inverse attraction region of a point p, i.e., the set of all beacon positions b such
that b attracts p. Two examples of these regions can be found in Fig. 2.

The PhD thesis of Biro [5] constitutes the first in-depth study of beacon-
based visibility. In particular, it considers beacon-based routing and guarding in
(two-dimensional) polygonal domains. The idea of beacon-based routing is as
follows: suppose we have a polygonal domain P that contains a set B of beacons,
and suppose we want to route a point-shaped object p towards a target t. We
assume that t can also act as a beacon, even if it is not contained in B. The
routing proceeds by successive activation of beacons in B ∪ {t}: a first beacon
b1 ∈ B is enabled to attract p until it reaches b1. Subsequently, b1 is disabled,

b p

Figure 2: The attraction region of a beacon b (left) and the inverse attraction region of a point
p (right).

2

and a second beacon b2 ∈ B is switched on, again attracting p until it reaches
b2. This is repeated until the last (implicit) beacon at t is enabled and finally
attracts p to its location. The challenge is to devise a strategy for placing the
beacons in P and for choosing a sequence of beacon activations such that it
becomes possible to route between any two locations s and t in P . The size of
B should be minimized. Note that we require that every activated beacon must
attract p until it reaches the beacon’s location. Only then are we allowed to
enable the next beacon. Thus, if p gets stuck, the process ends and the routing
is considered to be unsuccessful.

In beacon-based guarding (or coverage), the goal is to choose a minimum-size
set B of beacons such that the union of the attraction regions for B covers
the whole polygonal domain P . In this case, we say that B covers P . This is
analogous to the classic art-gallery problem [16], using beacon-based visibility
instead of straight-line visibility.

1.1. Related Work

Two dimensions. As mentioned above, a large part of the pioneering work on
beacon-based routing and guarding was done by Biro and his co-authors [6–8].
An extensive collection of results can be found in Biro’s PhD thesis [5].

Biro and his co-authors showed that bn/2c − 1 beacons always suffice and
sometimes are necessary for routing in a simple polygon with n vertices [7,
Theorem 1]. We will discuss this result in more detail in Section 2. More generally,
to route in a polygon with n vertices and h holes, bn/2c − h − 1 beacons are
sometimes necessary and bn/2c+h−1 beacons are always sufficient [7, Theorem 2].
For orthogonal polygons1, they showed only a loose lower bound of bn/4c − 1
beacons, leaving a larger gap for the routing problem [7, Theorem 3].

For beacon-based guarding of a simple polygon and of a polygon with h holes,
they showed that b4n/13c beacons are sometimes necessary, while b(n+ h)/3c
beacons are always sufficient [7, Theorem 5]. In particular, the upper bound
for simple polygons is bn/3c. For orthogonal polygons, they obtained an upper
bound of bn/4c and a lower bound of b(n+ 4)/8c [7, Section 6].

Bae et al. [3] improved some of these bounds by showing that bn/6c beacons
are sometimes needed and always sufficient for beacon-based guarding in orthog-
onal polygons. They also proved that if the polygon is monotone and orthogonal,
the bound reduces to b(n+ 4)/8c. The gap for routing in simple orthogonal
polygons was finally closed by Shermer [18] who showed that b(n− 4)/3c beacons
are always sufficient and sometimes necessary.

Aldana-Galván et al. [1] extended the notion of coverage to both the interior
and the exterior of a given polygon. They proved that bn/4c+ 1 vertex beacons
always suffice to simultaneously cover the interior and exterior of an orthogonal
polygon with n vertices (possibly with holes) [1, Theorem 1]. Table 1 gives an
overview of the currently best results for routing and guarding in two dimensions.

1A planar polygon is orthogonal if all its edges are parallel to the x- or the y-axis.

3

Bound
Problem Polygon type Lower Upper Reference

Simple bn/2c − 1 [7, Thm 1]
Routing With holes bn/2c − h− 1 (*) bn/2c+ h− 1 [7, Thm 2]

Orthogonal b(n− 4)/3c [18]

Simple b4n/13c bn/3c (*) [7, Thm 5]

Guarding With holes b4n/13c
⌊
(n+ h)/3

⌋
(*) [7, Thm 5]

Orthogonal bn/6c [3]

Table 1: The currently best results in two dimensions. The bounds marked (*) were conjectured
to be tight by Biro [5, Conjectures 6.3.3, 7.3.7, and 7.3.9]

So far, we have only discussed results that give combinatorial bounds on the
number of beacons needed to guard or to route in certain classes of polygons.
Naturally, the notions of beacon-based routing and guarding also lead to interest-
ing algorithmic questions. As is to be expected, several optimization problems
associated with beacons are hard: Biro [5, Theorems 6.2.2, 6.2.3, and 6.2.4]
showed that the All-Pair, All-Sink, and All-Source variants of the optimal
beacon routing problem are NP-hard. In these problems, we are given a simple
polygon P , and we need to find a minimum set B of beacons such that we can
route between any pair of points in P ; from a given location s ∈ P to all other
points in P ; or from all points in P to a given location t ∈ P , respectively. Biro
also showed that given a simple polygon P , it is NP-hard to find a minimum set
of beacons that covers P [5, Theorem 7.2.1].

On the positive side, Biro et al. [8, Theorem 6] presented an algorithm to
compute the attraction region of a given beacon in a polygon P with n vertices
and h holes in O(n+ h log1+ε h) time and O(n) space, for any fixed ε > 0. They
also described how to find the inverse attraction region of a point in a polygon
P with n vertices in O(n2) time [8, Theorem 8]. More generally, the inverse
attraction region of a polygonal region R in P with m vertices can be computed
in O(n2m2) time [8, Theorem 8]. As for routing, Biro et al. show how to find a
minimum-hop-beacon path between two points s and t in a polygon with n vertices
and h holes from a given set of m beacons in O(m(n + h log1+ε h + m log h))
time [8, Theorem 11]. They also provide a O(n3)-time 2-approximation algorithm
for the case that the beacons can be placed arbitrarily inside the polygon. As the
authors point out, this approximation algorithm can also be applied repeatedly
to obtain a PTAS. More recently, Kostitsyna et al. [13] gave an optimal algorithm
to compute the inverse beacon attraction region of a point in a simple polygon
in O(n log n) time. Further algorithmic results can be found in Kouhestani’s
PhD thesis [14].

Three dimensions. This work is based on the Master’s thesis of the first au-
thor [10] who presented the first combinatorial bounds for beacon-based routing
in three dimensions. In his thesis, Cleve also showed that Biro’s NP-hardness and
APX-hardness results for optimum beacon routing extend to three dimensions,

4

by a simple lifting argument [10, Section 4.3]. Finally, he constructed a three-
dimensional polyhedron that cannot be guarded by placing a beacon at every
vertex [10, Lemma 6.1]. Independently, and almost at the same time, Aldana-
Galván et al. [2, Section 2] obtained a stronger result: there exists an orthogonal
polyhedron that cannot be covered by beacons at every vertex. Furthermore,
Aldana-Galván et al. [2, Theorem 1] showed that every orthotree2 with n vertices
can be covered by bn/8c beacons. They described a family of orthotrees where
this number of beacons is needed. They also proved a tight bound of bn/12c
becons for well-separated orthotrees.3 Shortly afterwards, Aldana-Galván et
al. [1] introduced the notion of edge beacons. Here, every point of an edge e may
exert a magnet pull on a point-shaped object p, and p always moves towards the
point on e closest to it. Aldana-Galván et al. prove that bm/12c edge beacons are
always sufficient and sometimes bm/21c edge beacons are necessary to cover an
orthogonal polyhedron with m edges [1, Theorems 3 and 4]. If both the interior
and the exterior of an orthogonal polyhedron should be covered simultaneously,
bm/6c is a tight bound for the number of edge beacons required [1, Theorem 5].

2. Preliminaries

We begin by reviewing the proof that bn/2c−1 beacons are needed for routing
in a simple polygon with n vertices [7, Theorem 1]. This serves two purposes: on
the one hand, the argument serves as a starting point for our three-dimensional
bound; on the other hand, it provides an opportunity to correct a slight gap in
the published proof by Biro et al. [7].4

2.1. Two-dimensional Upper Bound

The following theorem states the main result for beacon-based routing in
two dimensions.

Theorem 1 (Biro et al. [7, Theorem 1]). Let P be a simple polygon with n
vertices. Then, bn/2c − 1 beacons are sometimes necessary and always sufficient
to route between any two points in P .

The strategy of Biro et al. [7] is as follows: they triangulate P to obtain
a partition into n − 2 triangles. Then, they place the beacons in P with an
inductive strategy. In each step, one beacon b is placed, and at least two triangles
are removed. They claim that there is always a way to position b on the boundary
of the remaining polygon such that the whole interior of the removed triangles

2 An orthotree is an orthogonal polyhedron made out of boxes that are glued face to face
and whose dual graph is a tree.

3An orthotree is well-separated if its dual graph has the property that all neighbors of a
vertex with degree strictly greater than 2 have degree at most 2.

4This issue and a possible fix have also been discovered by Tom Shermer, a fact personally
communicated to us by Irina Kostitsyna [12], but as far as we know, no updated version of the
proof has been published to date.

5

A

B

C

D

E

F

σ1 σ2

σ4

σ3

b

Figure 3: The situation analyzed by Biro et al. [7]. Here, b can be placed near D so that b can
see every point inside ABDFC. The edges AB, AC, CF , and DF are boundary edges and
BD is a diagonal.

can be seen from b. The inductive procedure ends as soon as no more triangles
are left. Biro et al. conclude that bn/2c − 1 beacons suffice for routing.

The technical heart of the argument lies in an analysis of different triangle
configurations. The goal is to show that by placing a single beacon, at least
two triangles can be removed. One configuration is as follows:5 we have a
central triangle σ2 = 4BCD with two adjacent triangles σ1 = 4ABC and
σ3 = 4CDF . Biro et al. [7] would like to argue that one can position a beacon
b on the free edge BD of σ2 such that the whole polygon ABDFC is completely
visible to b; see Fig. 3. More precisely, their reasoning goes like this:

The location b along BD is chosen so the pentagon ABDFC is
visible to b. This is always possible, by placing b on the correct side
of lines CF and AC. Then, any point in triangles 4ABC, 4BCD,
4CDF can be routed to or from b as b is visible to each point in
those triangles. — [7, p. 2]

However, the condition that b lies to the right of AC and to the left of FC
is not sufficient for the whole pentagon ABDFC to be visible from b. For this,
b must also be to the left of AB and to the right of FD, i.e., in the visibility
cone of both σ1 and σ3. Figure 4a shows a situation where this cannot be done:
the line through B and D limits the visibility of any beacon b in the relative
interior of the line segment BD. Moreover, if we place b at B or at D, then b
still cannot see the full pentagon.

Nonetheless, visibility is not actually required; mutual attraction would be
enough for the argument to go through. In fact, we can always place b so that it
attracts all points inside the pentagon ABDFC. Unfortunately, the inverse does
not hold. Consider Fig. 4b: unless b is placed at B, a point-shaped object at b
that is attracted by A will get stuck on the line segment BG; and analogously

5We follow the notation of the original work [7].

6

A

B

C

D

E

F

σ1
σ2

σ4

σ3

(a) Here, b cannot be placed on BD to see
the full pentagon.

A

B

C

D

E

F

G

H

b

(b) No matter where b lies on BD, it cannot
be attracted by both A and F .

Figure 4: It is not always possible to place one beacon b on the line segment BD such that it
attracts and is attracted by all points inside the pentagon ABDFC.

for D and F . Since b cannot be placed simultaneously at both B and D, the
requirement that b is attracted by both A and F cannot be fulfilled.

Nevertheless, Theorem 1 still holds, as we will show in the following lemma.
For completeness, we present the proof in full detail, and we indicate where we
depart from the original argument of Biro et al. [7, Theorem 1].

Lemma 2 (Two-dimensional upper bound). Let P be a simple polygon with
n ≥ 2 vertices. Then, bn/2c − 1 beacons are always sufficient to route between
any two points in P .

Proof. The proof proceeds by induction on n. For the base case, we assume that
2 ≤ n ≤ 4. If n ∈ {2, 3}, then P is either a line segment or a single triangle.
In both cases, P is convex and no beacon is needed. For n = 4, we let d be a
diagonal of P .6 We place one beacon at an arbitrary point b on d. Then, every
point p ∈ P can see b, which means that p and b mutually attract. Thus, we
can route from every s ∈ P to every t ∈ P via b.

Now suppose that n > 4 and assume that Lemma 2 holds for all simple
polygons with at most n− 1 vertices. We triangulate P and consider the dual
graph T of the triangulation: the triangles constitute the nodes, and two nodes
are adjacent if and only if the corresponding triangles share an edge in the
triangulation. As P is simple, T is a tree with n− 2 nodes and maximum degree
3. We take an arbitrary leaf of T , and we declare it the root. Let σ1 be a triangle
that corresponds to a deepest leaf in T . Let σ2 be the parent triangle of σ1.
There are two cases:

Case 1: the triangle σ1 is the only child of σ2. Let σ3 be the parent triangle
of σ2. Then, the triangles σ1, σ2, and σ3 share a common vertex v, and we place
a beacon b at v; see Fig. 5a. Next, we remove from P the parts of σ1 and σ2

6A diagonal is a line segment whose endpoints are vertices of P and whose relative interior
lies in the interior of P .

7

b

σ1 σ2

σ3

σ5
σ6

(a) The beacon b
covers at least three
triangles: σ1, σ2, σ3.

b1

b2
σ1 σ2

σ4

σ3

σ5
σ6

(b) The two beacons b1 and b2
cover σ1, σ2, σ3, and σ4 and
both neighbors of σ4.

b1

b2

P1

P2

(c) After removing σ1 to σ4
two (possibly empty) polygons
P1 and P2 remain.

Figure 5: The two possible configurations in the inductive step are shown in (a) and (b). (c)
shows the situation of (b) after removing the triangles.

that do not belong to another triangle of P . This gives a simple polygon P1 with
n1 = n− 2 vertices. By the inductive hypothesis, there is a set B1 of at most⌊n1

2

⌋
− 1 =

⌊
n− 2

2

⌋
− 1 =

⌊n
2

⌋
− 2

beacons that allows us to route between any two points in P1. We setB = B1∪{b}.
Then, we have |B| ≤ bn/2c − 1.

It remains to show that we can use B to route between any two points in
P . By the inductive hypothesis and because b lies in σ3 which remains in P1,
we can route between b and any point in P1. Furthermore, due to convexity of
triangles, every point p ∈ σ1 ∪ σ2 can see b, and thus p can attract b and can be
attracted by it. Hence, we can route between any pair of points in P using B.

Case 2: the triangle σ2 has a second child σ3. This is the erroneous case
in Biro et al. [7, Theorem 1]. Let σ4 be the parent triangle of σ2. Since σ1
is a deepest leaf in T , if follows that σ3 is also a leaf; see Fig. 5b. Instead of
placing a single beacon and removing three triangles, as suggested by Biro et
al. [7, Theorem 1], we place two beacons b1, b2 and remove four triangles. The
beacon b1 is placed at the common vertex of σ1, σ2, and σ4 (marked red), and
b2 is placed at the common vertex of σ3, σ2, and σ4 (marked blue). If σ4 has
more neighbors, they are also covered by {b1, b2}, see Fig. 5b.

We remove from P the set (σ1∪σ2∪σ3)\{b1, b2} and the interior of σ4. This
gives two polygons P1 and P2 with one common vertex, see Fig. 5c. Possibly, P1

or P2 (or both) degenerates to a line segment from b1 or b2 to the common vertex.
Let n1 ≥ 2 be the number of vertices of P1, and n2 ≥ 2 the number of vertices
of P2. We have n1 + n2 = n− 2, since we removed three vertices, and since P1

and P2 share one vertex to be counted twice. As n1 ≤ n− 1 and n2 ≤ n− 1, we
can apply the inductive hypothesis to P1 and P2. This gives two sets B1 ⊂ P1

and B2 ⊂ P2 of beacons with |B1| ≤ bn1/2c − 1 and |B2| ≤ bn2/2c − 1. We set

8

A

B

C

D

E

F

b

(a) ∠FCB > 3π/2 and b is placed at C.
However, despite ∠EBC ≤ 3π/2, a beacon
at E cannot attract an object at b.

A B = b1

C = b2

D

E

F

(b) ∠FCB ≤ 3π/2 and ∠EBC ≤ 3π/2. The
beacon is to be placed arbitrarily at B or C.
However, for both positions it cannot be
attracted by either F or E.

Figure 6: Two counterexamples for the alternative proof of Biro et al. [6].

B = B1 ∪B2 ∪ {b1, b2}. Then,

|B| = |B1|+ |B2|+ 2 ≤
⌊n1

2

⌋
− 1 +

⌊n2
2

⌋
− 1 + 2

=
⌊n1

2

⌋
+
⌊n2

2

⌋
≤
⌊
n1 + n2

2

⌋
=

⌊
n− 2

2

⌋
=
⌊n

2

⌋
− 1.

It remains to show that we can route between any two points in P . By the
inductive hypothesis, and since b1 lies on the boundary of P1 and b2 on the
boundary of P2, we can route between b1 and any point in P1, and between b2
and any point in P2. Moreover, since b1 and b2 both lie in σ2, they can see and
thus attract each other. Also, since every removed triangle σ1, σ2, σ3, and σ4
contains either b1 or b2, every point in

⋃4
i=1 σi can attract and be attracted by

b1 or b2. It follows that for every point p ∈ P , we can route between p and b1 or
between p and b2. Since we also can route between b1 and b2, it follows that we
can route between any two points in P .

Remark. The extended abstract for the original paper by Biro et al. from
2011 [6], available on Irina Kostitsyna’s ResearchGate profile, contains an al-
ternative proof for Theorem 1. This version handles Case 2 slightly differently.
However, we believe that it is susceptible to the same issues as the more recent
version of the proof [7]. More precisely, in the alternative proof, the authors use
the same notation as in Fig. 3. They say that if ∠FCB > 3π/2, the beacon b
should be placed at C. From this, it follows that ∠CBE ≤ 3π/2. The authors
claim that then, “all points inside 4BDE can reach b and vice versa”. However,
Fig. 6a shows a case where E cannot attract b. A similar counterexample applies
for the symmetric case where ∠EBC > 3π/2 and b is placed at B. If both
∠FCB ≤ 3π/2 and ∠EBC ≤ 3π/2, then b is to be placed “arbitrarily at either
B or C”, but Fig. 6b shows a configuration where both positions cannot be
attracted by all points inside the four triangles.

9

2.2. Tetrahedral Decompositions

To generalize the proof strategy from Theorem 1 to R3, we need a three-
dimensional analogue of polygon triangulation: the decomposition of a bounded
polyhedron into tetrahedra. This creates several difficulties that are not present
in the two-dimensional case. In 1911, Lennes [15] showed that there are polyhedra
that cannot be decomposed into tetrahedra without additional Steiner points. In
fact, it is NP-complete to decide whether a tetrahedral decomposition without
Steiner points exists [17]. The size of a tetrahedral decomposition is the number
of tetrahedra contained in it. Unlike in two dimensions, the size of a tetrahedral
decomposition may significantly exceed the number of vertices in the polyhedron.
Chazelle [9] showed that for any n, there exists a polyhedron with Θ(n) vertices
for which any decomposition into convex parts needs at least Ω(n2) pieces.
On the other hand, Bern and Eppstein [4, Theorem 13] described how to
decompose any polyhedron into O(n2) tetrahedra using O(n2) Steiner points.
Furthermore, a tetrahedral decomposition clearly must have size at least n− 3.
A single polyhedron may have different tetrahedral decompositions of varying
sizes. For example, the triangular bipyramid can be decomposed into two or
three tetrahedra [17, p. 228]. Thus, our bounds will be in terms of the minimum
size of a decomposition rather than the number of vertices. Steiner points are
allowed.

To extend the ideas for two dimensions to R3, we must understand the dual
graph of a tetrahedral decomposition. This graph is defined as follows:

Definition 3. Given a tetrahedral decomposition Σ = {σ1, . . . , σm} of a three-
dimensional polyhedron, the dual graph D(Σ) of Σ is the undirected graph with
vertex set {σ1, . . . , σm} in which there is an edge between two distinct tetrahedra
σi and σj if and only if σi and σj share a triangular facet.

Similarly to the two-dimensional case, the dual graph D(Σ) of a tetrahedral
decomposition has maximum degree 4. However, unlike in two dimensions, D(Σ)
is not necessarily a tree. The following lemma provides a tool for placing beacons
in connected subgraphs of D(Σ).

Lemma 4. Let Σ be a tetrahedral decomposition of a three-dimensional polyhe-
dron, and let D(Σ) be the dual graph of Σ. Consider a set S ⊆ Σ of tetrahedra
such that the induced subgraph D(S) of D(Σ) is connected. Then,

(i) if |S| = 2, the tetrahedra in S share a triangular facet;

(ii) if |S| = 3, the tetrahedra in S share one edge; and

(iii) if |S| = 4, the tetrahedra in S share at least one vertex.

Proof. We consider the three cases separately.
Case (i): this follows directly from Definition 3.
Case (ii): since D(S) is connected and since |S| = 3, there is a tetrahedron

σ ∈ S adjacent to the other two. By Definition 3, this means that σ shares a

10

(a) One tetrahedron in the
center has all other
tetrahedra as neighbors.

(b) Two tetrahedra with
one and two tetrahedra
with two neighbors.

(c) All four tetrahedra
share one edge.

Figure 7: The three possible configuration for a polyhedron with a decomposition into four
tetrahedra. The shared vertex or edge is marked.

facet with each of the other two tetrahedra. Since σ is a tetrahedron, any two
facets in σ share an edge. The claim follows.

Case (iii): see Fig. 7. Let S′ ⊂ S be three tetrahedra in S so that D(S′)
is connected. By (ii), the tetrahedra in S′ share an edge e. By Definition 3,
the remaining tetrahedron in S \ S′ shares a facet f with a tetrahedron σ ∈ S′.
Since e contains two vertices of σ while f contains three vertices, e and f must
share at least one vertex. The claim follows.

3. An Upper Bound for Beacon-based Routing

We now give an upper bound on the number of beacons needed to route
within a polyhedron, extending the strategy of Biro et al. [7], as described in
Section 2, to three dimensions. We want to show the following:

Theorem 5. Let P be a three-dimensional polyhedron, and let Σ be a tetrahedral
decomposition of P of size m. There is a set of at most b(m+ 1)/3c beacons
that allows us to route between any pair of points in P .

The rest of this section is dedicated to the inductive proof of Theorem 5.
The following lemma constitutes the base case of the induction.

Lemma 6 (Base case). Let P be a three-dimensional polyhedron, and let Σ
be a tetrahedral decomposition of P of size m ≤ 4. There is a set of at most
b(m+ 1)/3c beacons that allows us to route between any pair of points in P .

Proof. If m = 1, then P is a convex tetrahedron, and no beacon is needed. If
m ∈ {2, 3, 4}, we apply Lemma 4 to obtain a vertex v that is common to all
tetrahedra in Σ. We place one beacon b at v. By convexity, every point in P
can attract and be attracted by b, and the claim follows.

We proceed to the inductive step. For this, we consider a tetrahedral
decomposition Σ of size m > 4. Our goal is to place k beacons, for some k ≥ 1,

11

σ1

σ2

σ3 σ4

to
ro

ot

(a) Remove σ1, σ3, and σ4
by placing a beacon where
all four tetrahedra meet.

σ1

σ2

σ3

σ4

to
ro

ot

(b) Remove σ1, σ2, and σ3
by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4
to

root

(c) Remove σ1, σ2, and σ3
by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5 σ6

to root

(d) Remove σ1, σ2, and σ4
by placing a beacon where
all four tetrahedra meet.

σ1

σ2
σ3

σ4

σ5

σ6 σ7

to root

(e) Remove σ1, σ2, σ4, and
σ5 by placing a beacon
where σ1 to σ5 meet.

σ1

σ2

σ3

σ4

σ5

σ6

to
ro

ot

(f) The number and
configuration of σ6’s
children must be looked at.

Figure 8: The possible configurations in the first part of the inductive step.

such that the beacons lie in at least 3k + 1 tetrahedra and therefore can attract
and can be attracted by all points in those tetrahedra. Then, we remove at least
3k tetrahedra, leaving a polyhedron with a tetrahedral decomposition of size
strictly less than m. We apply induction, and then show how to route between
the smaller polyhedron and the removed tetrahedra.

To do this, we look at the dual graph D(Σ) of Σ, as in Definition 3. Let T
be a spanning tree of D(Σ), rooted at an arbitrary leaf. We do not distinguish
between nodes of T and the corresponding tetrahedra. Let σ1 be a deepest leaf
of T . If there are multiple such leaves, we choose σ1 such that its parent σ2
has the largest number of children, breaking ties arbitrarily. Fig. 8 shows the
different cases how T can look like around σ1 and σ2. First, we focus on Figs. 8a
to 8e. In all five cases, T must have at least one additional root node—either
because m ≥ 5 or because T is rooted at a leaf. The situation in Fig. 8f will be
dealt with in Lemma 9.

Lemma 7 (Inductive step I). Let P be a three-dimensional polyhedron, and Σ
a tetrahedral decomposition of P of size m ≥ 5. Let T be a spanning tree of
the dual graph D(Σ), rooted at a leaf of T . Let σ1 be a deepest leaf of T with
the maximum number of siblings, and σ2 its parent. Assume that one of the
following conditions holds:

(i) σ2 has exactly three children σ1, σ3, and σ4 (see Fig. 8a);

12

(ii) σ2 has exactly two children σ1 and σ3, and a parent σ4 (Fig. 8b);

(iii) σ2 has exactly one child σ1 and is the only child of its parent σ3, whose
parent is σ4 (Fig. 8c);

(iv) σ2 has exactly one child σ1 and its parent σ3 has two or three children at
least one of which, say σ4, is a leaf (Fig. 8d); or

(v) σ2 has exactly one child σ1 and its parent σ3 has three children, each of
which has a single leaf child (Fig. 8e).

Then, we can place a beacon b at a vertex of σ1 such that b lies in at least four
tetrahedra. After that, we can remove at least three of these tetrahedra so that T
stays a tree and at least one remaining tetrahedron in T contains b.

Proof. We consider the cases individually.
Cases (i–iv): in each case, the induced subgraph on {σ1, σ2, σ3, σ4} is

connected. Thus, Lemma 4(iii) implies that the four tetrahedra share a vertex
v. We place b at v. After that, we remove either σ1, σ3, and σ4 (case (i)); σ1,
σ2, and σ3 (cases (ii) and (iii)); or σ1, σ2, and σ4 (case (iv)). In each case, we
remove either only leaves or inner nodes with all their children. This means that
the tree structure of T is preserved. Moreover, we only remove three of the four
tetrahedra that contain b, so one of them remains in T .

Case (v): as shown in Fig. 8e, we have three connected sets, each containing
σ3, a child σi of σ3, and σi’s child: {σ1, σ2, σ3}, {σ5, σ4, σ3}, and {σ7, σ6, σ3}.
By Lemma 4(ii), each set has a common edge. These three edges all occur in
σ3, and since σ3 is a tetrahedron, at least two of them share an endpoint v.
Without loss of generality, let these be the common edges of {σ1, σ2, σ3} and of
{σ5, σ4, σ3}. We place b at v, and we remove σ1, σ2, σ4, and σ5. The beacon b
is also contained in σ3, which remains in T .

The final configuration is shown in Fig. 8f. The following lemma provides an
analysis of how the tetrahedra can intersect in this case.

Lemma 8. Let Σ be a tetrahedral decomposition of size 6, and suppose that
D(Σ) has a spanning tree as in Fig. 9a. Then at least one of the following holds:

(i) σ1, σ2, σ3, σ4, and σ5 have a common vertex; or

(ii) σ3, σ4, σ5, and σ6 share a common vertex v; σ1, σ2, σ3, and σ6 share a
common edge e; and v ∩ e = ∅. A symmetric situation is also possible.

Proof. Let S1 = {σ3, σ4, σ5, σ6} and S2 = {σ1, σ2, σ3, σ6}. By Lemma 4, each
set shares at least a vertex, but it may also share an edge. There are three cases:

Case 1: both S1 and S2 share an edge. These edges must belong to the
triangular facet that connects σ3 and σ6. Thus, they share a common vertex,
and (i) holds.

13

σ6

σ3

σ4

σ5

σ2

σ1

(a) The dual graph
of the tetrahedral
decomposition.

σ5

σ1

σ4

σ2

σ3

σ6

(b) The four tetrahedra on the
left share a common vertex while
the four tetrahedra on the right
share a common edge.

σ5 σ1

σ4 σ2

σ3

σ6

(c) All tetrahedra but the
rearmost tetrahedron σ6
share one common vertex,
marked in orange.

Figure 9: A tetrahedron σ6 with a subtree of five tetrahedra. Figures (b) and (c) depict
configurations that satisfy cases (ii) and (i) of Lemma 8, respectively.

Case 2: exactly one of S1, S2 shares an edge e, while the other shares only
a vertex v. If v ∩ e = v, then (i) applies, and if v ∩ e = ∅, then (ii) holds—see
Fig. 9b for an example.

Case 3: both S1 and S2 share only a vertex; see Fig. 9c. Let v be the vertex
of σ3 that is not in the facet shared by σ3 and σ6. In Fig. 9c, v is marked orange.
Since σ2 is adjacent to σ3, it follows that σ2 contains v and three of its four
facets contain v. One of these facets is the shared facet with σ3, and we claim
that σ1 is placed at one of the other two. Indeed, σ1 cannot be located at the
fourth facet of σ2, since otherwise it would share an edge with σ2, σ3 and σ6,
which is ruled out by the current case. Thus, v ∈ σ1, and a symmetric argument
shows that v ∈ σ5. It follows that (i) holds.

Now, we can proceed with the inductive step for the configuration from Fig. 8f.
The problem is that to remove {σ1, . . . , σ5}, we need two beacons. However, this
does not meet our goal of handling at least 3k tetrahedra by placing k beacons,
for a k ≥ 1. If we removed σ6 and if σ6 had additional children, the remaining
dual graph might no longer be connected, and we could not continue with our
induction. Thus, we must look at the (additional) subtrees of σ6.

Since there are many possibilities, we wrote a short Python program to
generate all the cases. Our program enumerates all rooted, ordered, ternary
trees of height at most three. To each such tree, the program repeatedly applies
Lemma 7 to prune subtrees. If this results in an empty tree, the case does not
need to be considered. If not, we save the remaining tree for manual consideration,
eliminating isomorphic copies of the same tree. The source code is in Appendix A.
The program leaves us with nine different cases, shown in Fig. 10. In each case,
the subtree from Fig. 8f is present. The following lemma explains how to place
the beacons.

Lemma 9 (Inductive step II). Let P be a three-dimensional polyhedron, with a

14

σ6

σ3

σ2

σ1

σ4

σ5

(a)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

(b)

σ6

σ3

σ2

σ1

σ4

σ5

σ7 σ8

(c)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

(d)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

(e)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

(f)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

(g)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

σ13

(h)

σ6

σ3

σ2

σ1

σ4

σ5

σ7

σ8

σ9

σ10

σ11

σ12

σ13

σ14

σ15

σ16

(i)

Figure 10: The “nontrivial” configurations of children of σ6. The tree in (a) is a subtree of
all configurations. In all cases, σ6 has no other children than those shown here. Furthermore,
since T is rooted at a leaf node, σ6 needs to have an additional parent (except in case (a)).

tetrahedral decomposition Σ of size m ≥ 5. Let T be a spanning tree of the dual
graph D(Σ), rooted at an arbitrary leaf. Let T ′ ⊆ T be a subtree of T with height
3 for which Lemma 7 cannot be applied; see Fig. 10.

Then, there is a set B of k ≥ 2 beacons that are vertices in at least 3k + 1
tetrahedra from T ′, such that the induced subgraph for B on Σ is connected.
Furthermore, we can remove at least 3k tetrahedra, each containing a beacon from
B, so that T remains connected and so that at least one remaining tetrahedron
contains a beacon from B

Proof. We say that two beacons b1 and b2 share an edge or are neighbors if a
a tetrahedron of Σ contains an edge between the vertices where b1 and b2 are
placed. We go through the cases.

Fig. 10a: by Lemma 4(iii) the sets {σ1, σ2, σ3, σ6} and {σ6, σ3, σ4, σ5} each
share one vertex, say v1 and v2, respectively. If v1 6= v2, we set B = {v1, v2}. If
v1 = v2, we set B = {v1, w}, where w is any of the three other vertices of σ6.
If σ6 has a parent tetrahedron, the shared facet contains three vertices of σ6
and hence at least one beacon from B. Thus, by placing k = 2 beacons, we can
remove the 6 = 3k tetrahedra {σ1, . . . , σ6}.

Fig. 10b: we have the same situation as in Fig. 10a, except for the additional
tetrahedron σ7. We choose B as in Fig. 10a, and we observe that σ6 contains

15

two beacons. Thus, σ7 contains at least one beacon from B. Hence, by placing
k = 2 beacons, we can remove the 7 > 3k tetrahedra {σ1, . . . , σ7}.

Fig. 10c: we apply the same argument as for Fig. 10b, observing that σ8
must also contain a beacon from B. Thus, by placing k = 2 beacons, we can
remove the 8 > 3k tetrahedra σ1 to σ8.

Fig. 10d: by Lemma 4(ii), the set {σ6, σ7, σ8} shares an edge e. We apply
Lemma 8 to {σ1, . . . , σ6}. This gives two cases. Case (i): {σ1, . . . , σ5} share
a vertex v. As v is in σ3, and as σ3 shares a facet with σ6, three neighboring
vertices of v are in σ6. The edge e contains at least one of those three neighbors.
We call it w. We set B = {v, w}. Case (ii): we obtain a vertex v and an edge e′

in σ6, with v ∩ e′ = ∅. This covers three vertices of σ6, so the edge e shares at
least one vertex with v or with e′. To obtain B, we choose two vertices of σ6
such that v, e′, and e each contain at least one. In both cases, the beacons in B
are neighbors. We place k = 2 beacons, and we remove the 7 > 3k tetrahedra
{σ1, . . . , σ5, σ7, σ8}.

Fig. 10e: by Lemma 4(ii), the sets {σ6, σ7, σ8} and {σ6, σ9, σ10} share edges
e1 and e2, respectively. We apply Lemma 8 to {σ1, . . . , σ6}. This again gives
two cases. Case (i): {σ1, . . . , σ5} share a vertex v. We set B = {v, w1, w2} such
that w1 and w2 are vertices of σ6, |B| = 3, and both edges e1 and e2 contain
at least one beacon. As in Fig. 10d, v is a neighbor of w1 or w2. Furthermore,
w1 and w2 are neighbors because they are vertices of σ6. Case (ii): we obtain
a vertex v and an edge e in σ6, with v ∩ e = ∅. We set B = {v, w1, w2}, where
w1 and w2 are vertices of σ6, such that |B| = 3 and such that all edges e, e1,
and e2 contain at least one beacon. Since all beacons lie in σ6, they are mutual
neighbors. In both cases, we place k = 3 beacons such that every tetrahedron
contains at least one. We remove the 9 = 3k tetrahedra {σ1, . . . , σ10} \ {σ6}.

Fig. 10f: we apply Lemma 8 to {σ1, . . . , σ6} and to {σ6, . . . , σ11}. There
are several cases. Case (i): each of {σ1, . . . , σ5} and {σ7, . . . , σ11} share a vertex,
say v1 and v2, respectively. By the argument from Fig. 10d, three neighboring
vertices of v1 and three neighboring vertices of v2 are vertices of σ6. Thus, there
is a vertex v of σ6 that is a neighbor of v1 and of v2. We set B = {v, v1, v2}.
Case (ii): without loss of generality, the set {σ1, . . . , σ5} shares a vertex v1 and
the set {σ6, . . . , σ11} has a vertex v2 and an edge e in σ6, with v2 ∩ e = ∅. Then,
at least one of the three vertices of σ6 that are neighbors of v1 is covered by v2∪e.
We set B = {v1, v2, w}, where w is an endpoint of e. Case (iii): {σ1, . . . , σ6}
have a vertex v1 and an edge e1 in σ6 and {σ6, . . . , σ11} have a vertex v2 and
an edge e2 in σ6. We choose for B three vertices of σ6 such that v1, v2, e1, and
e2 each contain at least one beacon. In all cases, we place k = 3 beacons, so
that B is connected and every tetrahedron in {σ1, . . . , σ11} contains at least one
beacon. We remove 10 > 3k tetrahedra: all but σ6.

Fig. 10g: this is similar to Fig. 10f. We only describe how to ensure that B
contains a vertex of σ12. In Case (i), v can be placed at two vertices. We choose
the vertex that lies in σ12. This is always possible, as σ12 contains three of the
four vertices of σ6. In Case (ii), we choose w as an endpoint of e that lies in σ12.
The same argument as before applies. In Case (iii), B must contain a vertex of
σ12, since three beacons are at vertices of σ6. Thus, by placing k = 3 beacons,

16

we remove 11 > 3k tetrahedra: all but σ6.
Fig. 10h: initially, we choose a set of beacons B′ as in Fig. 10f, at first

ignoring σ12 and σ13. By Lemma 4(ii), {σ6, σ12, σ13} shares an edge e′. If e′

is covered by B′, we set B = B′. If not, we set B = B ∪ {w}, where w is
an endpoint of e′. Thus, by placing k ≤ 4 beacons, we may remove 12 ≥ 3k
tetrahedra: all but σ6.

Fig. 10i: let S1 = {σ1, . . . , σ6}, S2 = {σ6, . . . , σ11}, S3 = {σ6, σ12, . . . , σ16}.
Also, let S′1 = S1 \{σ6}, S′2 = S2 \{σ6}, and S′3 = S3 \{σ6}. We apply Lemma 8
to S1, to S2, and S3. There are several cases. Case (i): S′1, S′2, and S′3 each share
a vertex, say v1, v2, and v3. By the argument of Fig. 10d, each of v1, v2, v3 has
three neighbors that are vertices of σ6. Thus, they have one common neighbor
vertex w in σ6. We set B = {v1, v2, v3, w}. Case (ii): without loss of generality,
S′1 and S′2 each share a common vertex, say v1 and v2, and for S3 we obtain a
vertex v3 and an edge e3 in σ6, with e3 ∩ v3 = ∅. We set B = {v1, v2, v3, w},
where w is an endpoint of e. Since v3 and w are in σ6, it follows that v1 and v2
have a neighboring beacon in σ6. Case (iii): without loss of generality, S′1 has
a common vertex v1 and S2 and S3 each have a vertex v2 and v3 as well as an
edge e2 and e3, all four in σ6. We place a beacon at v1 and three beacons at
vertices of σ6 such that v2, v3, and both edges e1 and e2 contain at least one
beacon. Since three neighbors of v1 are in σ6, the beacon at v1 has at least one
beacon neighbor in σ6. Case (iv): S1, S2, and S3 each have a vertex and an edge
in σ6. We place three beacons so that all of them are covered. In all cases, we
place k ≤ 4 beacons to remove 15 > 3k tetrahedra: all but σ6.

We are now ready to prove Theorem 5:

Proof (of Theorem 5). We use induction on the size of the tetrahedral decom-
position. The base case is in Lemma 6. Next, we assume that the inductive
hypothesis (Theorem 5) holds for all polyhedra that have a tetrahedral decom-
position of size less than m. Consider a spanning tree T of the dual graph D(Σ)
of the tetrahedral decomposition Σ, rooted at an arbitrary leaf. Let σ1 be a
deepest leaf. If σ1 is not unique, choose one with the largest number of siblings,
breaking ties arbitrarily. We can then apply either Lemma 7 or Lemma 9, to
obtain the following:

(i) we have placed a set B of k ≥ 1 beacons at vertices of Σ, and we have
removed at least 3k tetrahedra;

(ii) every removed tetrahedron contains at least one beacon in B;

(iii) the induced subgraph on B on the vertices and edges of Σ is connected;

(iv) there is a beacon b ∈ B in the remaining polyhedron P ′.

By (i), the new polyhedron P ′ has a tetrahedral decomposition of size
m′ ≤ m− 3k < m. Thus, by the inductive hypothesis, we need

k′ =

⌊
m′ + 1

3

⌋
≤
⌊
m− 3k + 1

3

⌋
=

⌊
m+ 1

3

⌋
− k

17

beacons to route between any pair of points in P ′. Since k′ + k = b(m+ 1)/3c,
we do not exceed the claimed amount of beacons. By the inductive hypothesis
and (iv), it follows in particular that we can route from any point in P ′ to the
beacon b ∈ B and vice versa. From (ii), we know that for every point p in
the removed tetrahedra, there is a beacon b′ ∈ B such that p attracts b′ and
b′ attracts p. Finally, due to (iii), we can route between all beacons in B. In
conclusion, we can route between any pair of points in P . This completes the
inductive step.

Observation 10. Theorem 5 also implies that max{1, b(m+ 1)/3c} beacons
are sufficient to guard a polyhedron with a tetrahedral decomposition of size m.
We need at least one beacon to cover the polyhedron, and placing them as in
the previous proof is enough.

4. A Lower Bound for Beacon-based Routing

Our next goal is to obtain a lower bound for the number of beacons needed
to route in three-dimensional polyhedra. We first give an alternative proof
for the lower bound of bn/2c − 1 beacons for routing in two dimensions. Our
construction is similar to the one by Shermer [18] for orthogonal polygons. We
present a family of spiral-shaped polygons for which we will then argue that
bn/2c − 1 beacons are needed for routing between a specific pair of points.

Definition 11. Given c ∈ N>0 the c-corner spiral polygon is a simple polygon
with n = 2c+ 2 vertices s = r0, r1, . . . , rc, t = rc+1, qc, qc−1, . . . , q1, in clockwise
order. The polar coordinates of the vertices are as follows:

• rk =
(⌊
k/3
⌋

+ 1; k · 2π/3
)
, for k = 0, . . . , c+ 1; and

• qk =
(⌊
k/3
⌋

+ 1.5; k · 2π/3
)
, for k = 1, . . . , c.

The trapezoids rkqkqk+1rk+1, for k = 1, . . . , c−1 and the two triangles 4sr1q1
and 4trcqc are called the hallways.

An example for c = 5 is shown in Fig. 11, with a placement of five beacons
to route from s to t.

Lemma 12 (Two-dimensional lower bound). Let c ∈ N>0 and let P be a c-
corner spiral polygon. Let B ⊂ P be a set of beacons that lets us route from s to
t. Then, we have |B| ≥ c.

Proof. We shoot three rays from the origin with angles π/3π, π, and 5π/3; see
Fig. 11. Each edge of P is intersected by exactly one ray. For k = 1, . . . , c+1, the
intersection of a ray with the edge rk−1rk is called ak and the intersection with
the edge qk−1qk is called bk. We divide P into c+ 2 subpolygons C0, . . . , Cc+1

by drawing the line segments akbk, for k = 1, . . . , c+ 1. This gives two triangles
C0 and Cc+1, with s and t, respectively, and c subpolygons C1, . . . , Cc, called

18

0π

2
3π

4
3π

s t

Figure 11: A 5-corner spiral polygon for which five beacons (marked in red) are necessary to
route from s to t.

rk−1

rk

qk−1

qk

ak

bk

ak+1bk+1

αk

αk−1

(a) Notation for the triangular spiral.

Ak
drk

qk

ak

bk

ak+1bk+1

Ck−1

Ck+1

(b) The complete corner Ck.

Figure 12: A more detailed look at the parts of the spiral polygon.

19

0π

2
3π

4
3π

s t

A1

A2

A3

A4

A5

a1

b1

a2
b2

a3
b3

a4

b4

a5
b5

a6

b6

Figure 13: A 5-corner spiral polygon which shows the possible locations of the needed beacons
to route through each corner when routing from s to t.

the complete corners of P ; see Fig. 12a. We show that for k = 1, . . . , c, there
must be at least one beacon from B in Ck \ (akbk ∪ ak+1bk+1).

Suppose we route a point-shaped object p from s to t with the help of B.
Fix a complete corner Ck, 1 ≤ k ≤ c, as in Fig. 12b. Consider the last time the
object p crosses akbk. At this point, p is attracted by a beacon b ∈ B, and as we
require that p moves all the way to b, the beacon b must lie in a complete corner
C`, with ` ≥ k (and b is not on the line segment akbk). In fact, b can only be in
Ck or in Ck+1, since otherwise it is clearly not possible that p reaches b along an
attraction path. Thus, for p to reach b, it must be the case that either akbk is
directly visible from b, or that the closest point to b on rkak is rk. Otherwise, p
would get stuck on rkak, see Fig. 12b. The hatched region Ak in Fig. 12b shows
the possible positions of b under these constraints. If this region is disjoint from
akbk ∪ ak+1bk+1 the claim follows immediately.

In Fig. 13 we can see all Ak for 1 ≤ k ≤ c+ 1 for c = 5. Clearly none of the
Ak intersect akbk. We show that none of the Ak intersect ak+1bk+1 for each of
the three directions:

(i) k = 1, 4, 7, . . .: The Ak are congruent since the angle αk is always exactly

20

π/3. Hence, as can be observed in Fig. 13, for increasing k the distance
from Ak to ak+1bk+1 increases. Since A1 does not intersect a2b2 the same
holds true for all k = 1, 4, 7,

(ii) k = 2, 5, 8, . . .: The boundary edge of Ak which could intersect ak+1bk+1

is always horizontal. As long as bk+1 lies above this boundary edge no
intersection is possible. This is the case for A2 (as visible in Fig. 13). Since
the length of the hallways increases and the angle αk decreases for increasing
k it is always the case that bk+1 lies above the horizontal bounding edge
of Ak. Hence, none of the Ak intersect ak+1bk+1 for k = 2, 5, 8,

(iii) k = 3, 6, 9, . . .: A3 clearly does not intersect a4b4. However, as k grows,
the angle αk increases towards π/3 and the Ak grow towards a shape that
is congruent with A1. Since the hallways become larger and larger, even
putting a rotated copy of A1 at A3 would not give an intersection with
a4b4.

It follows that |B| ≥ c.

We now extend this proof to three dimensions. For this, we first define a
c-corner spiral polyhedron.

Definition 13. Given c ∈ N>0 the c-corner spiral polyhedron is a polyhedron
with n = 3c+2 vertices s = r0, r1, . . . , rc, t = rc+1, q1, . . . , qc, and z1, . . . , zc. The
coordinates of s, t, qk, and rk, for k = 1, . . . , c, are the same as in Definition 11,
with the z-coordinate set to 0. The zk are positioned above the corresponding

rk, i.e., zk = rk +
(
0
0
1

)
, for k = 1, . . . , c. The edges and facets are given by the

following tetrahedral decomposition:

• The start and end tetrahedra are r1q1z1s and rcqczct.

• The hallway between two triangles4rkqkzk and4rk+1qk+1zk+1 consists of
the three tetrahedra rkqkzkrk+1, rk+1qk+1zk+1qk, and qkzkrk+1zk+1,
for k = 1, . . . , c− 1.

For c = 1, the c-corner spiral polyhedron has two tetrahedra. For c > 1,
we add c− 1 hallways, each with three tetrahedra. This means that a c-corner
spiral polyhedron has a tetrahedral decomposition of size m = 3c− 1. Thus, by
Definition 13, the number of tetrahedra in terms of the number of vertices is
m = 3 · (n− 2)/3− 1 = n− 3, the smallest number possible for a given n.

Lemma 14 (Lower bound). Let c ∈ N>0 and let P be a c-corner spiral polyhe-
dron. Let B be a set of beacons that lets us route from s to t. Then, |B| ≥ c.

Proof. We show that a projection B′ of B onto the xy-plane maintains the
attraction regions. It then follows from Lemma 12 that |B| = |B′| ≥ c.

Note that the only reflex edges in P are the edges ek = rkzk for all k = 1, . . . , c.
Look at a beacon b ∈ B and its projection b′ ∈ B′. If a point p is visible from
b it must be visible from b′ as well: Since the hallways are convex objects and

21

the only edges that could prevent visibility are the vertical reflex edges rkzk a
vertical translation of b to b′ cannot inhibit visibility.

If a point p is attracted by b (but not visible from b) it must be attracted by
b′ as well. Each such attraction goes through exactly one reflex edge: at least
one since p is not visible and at most one since two reflex edges in P together
form angles larger than π. The movement of p is a movement (possibly of length
zero) until it hits a face fk = rkzkrk+1zk+1 at point q. It then slides along fk
until it hits one of the boundary edges w.l.o.g. ek = rkzk at point u. It then
moves directly towards b.

Since fk is orthogonal to the xy-plane if p is attracted by b′ it will hit fk at
a point q′ which can be obtained by moving q down along the z-axis. Hence
the point then slides from q′ along fk towards ek where it reaches at a point u′

which (again due to ek being orthogonal to the xy-plane) can be obtained by
moving u down along the z-axis. It then moves directly towards b′.

Thus the set B can only attract what B′ can. Since B′ lies in the xy-plane
and a cross section of P along the xy-plane gives exactly a c-corner spiral polygon
P ′. By Lemma 12 we obtain then that |B| = |B′| ≥ c, as claimed.

5. A Tight Bound for Beacon-based Routing

We combine the results from Section 3 and Section 4 into a tight bound:

Theorem 15. Let P be a three-dimensional polyhedron, and m the smallest size
of a tetrahedral decomposition of P . Then, it is always sufficient and sometimes
necessary to place b(m+ 1)/3c beacons to route between any pair of points in P .

Proof. The upper bound was shown in Theorem 5. For the lower bound, we con-
sider the c-corner spiral polyhedron Pc with c = b(m+ 1)/3c. By Definition 13,
Pc has a smallest tetrahedral decomposition of size m′ = 3c− 1. Furthermore,
by Lemma 14, we need at least c beacons to route in Pc. This also shows that
Pc does not have a tetrahedral decomposition with size strictly less than m′,
since otherwise Theorem 5 would yield a contradiction.

Due to the rounding we might have m′ = m − 1 or m − 2. We then look
at the (c + 1)-corner spiral Pc+1 that consists of three tetrahedra more than
Pc. More specifically, the last hallway of Pc+1 consists of the three tetrahedra
σ1 = rcqczcrc+1, σ2 = qczcrc+1zc+1, and σ3 = qcrc+1qc+1zc+1. The
tetrahedron σ1 is already present in Pc. Hence, for m′ = m− 1, we add σ2, and
for m′ = m− 2, we add σ2 and σ3 to Pc. Since for each additional tetrahedron
we also need to add one additional vertex (zc+1 for σ2 and qc+1 for σ3), there is
no decomposition of the resulting polyhedron into less than m tetrahedra.

Additionally, the resulting polyhedron also needs at least c beacons because
the added tetrahedra cannot lower the number of beacons needed.

6. Conclusion

We have shown that, given a tetrahedral decomposition of a polyhedron P
of size m, we can place b(m+ 1)/3c beacons to route between any pair of points

22

in P . We also constructed a family of polyhedra where this is also necessary.
A lot of questions that have been studied in two dimensions remain open for

the three-dimensional case. For example, the complexity of finding an optimal
beacon set to route between a given pair of points remains open. Additional open
questions concern the efficient computation of attraction regions (computing the
set of all points attracted by a single beacon) and of beacons kernels (all points
at which a beacon can attract all points in the polyhedron).

Furthermore, Cleve [10] showed that not all polyhedra can be covered by
vertex beacons and Aldana-Galván et al. [1, 2] showed that this is even true for
orthogonal polyhedra. Given a polyhedron P with a tetrahedral decomposition
of size m, it remains open whether it is possible to guard P with fewer than
max{1, b(m+ 1)/3c} beacons as in Observation 10.

References

[1] I. Aldana-Galván, J. L. Álvarez Rebollar, J. C. Catana Salazar,
N. Maŕın Nevárez, E. Soĺıs Villarreal, J. Urrutia, and C. Velarde. Beacon
coverage in orthogonal polyhedra. In Proc. 29th Canad. Conf. Comput.
Geom. (CCCG), pages 166–171, 2017.

[2] I. Aldana-Galván, J. L. Álvarez-Rebollar, J. C. Catana-Salazar, N. Maŕın-
Nevárez, E. Soĺıs-Villarreal, J. Urrutia, and C. Velarde. Covering orthotrees
with guards and beacons. In Proc. 17th Spanish Meeting Comput. Geom.
(EGC), pages 29–32, 2017.

[3] S. W. Bae, C.-S. Shin, and A. Vigneron. Tight bounds for beacon-based
coverage in simple rectilinear polygons. In Proc. 12th Lat. Am. Symp. Theor.
Inf. (LATIN), pages 110–122, 2016.

[4] M. Bern and D. Eppstein. Mesh generation and optimal triangulation.
Computing in Euclidean geometry, 4:47–123, 1995.

[5] M. Biro. Beacon-Based Routing and Guarding. PhD thesis, State University
of New York at Stony Brook, 2013.

[6] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon-
based routing and coverage. In Proc. 21st Fall Workshop Comput. Geom.
(FWCG), 2011.

[7] M. Biro, J. Gao, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Combina-
torics of beacon-based routing and coverage. In Proc. 25th Canad. Conf.
Comput. Geom. (CCCG), pages 129–134, 2013.

[8] M. Biro, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon-based
algorithms for geometric routing. In Proc. 13th Int. Symp. Algorithms Data
Struct. (WADS), pages 158–169, 2013.

[9] B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-case
optimal algorithm. SIAM J. Comput., 13(3):488–507, 1984.

23

[10] J. Cleve. Combinatorics of beacon-based routing and guarding in three
dimensions. Master’s thesis, Freie Universität Berlin, 2017.

[11] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University
Press, 2007.

[12] I. Kostitsyna. Personal communication. 2019.

[13] I. Kostitsyna, B. Kouhestani, S. Langerman, and D. Rappaport. An optimal
algorithm to compute the inverse beacon attraction region. In Proc. 34th
Int. Symp. Comput. Geom. (SoCG), pages 55:1–14, 2018.

[14] B. Kouhestani. Efficient algorithms for beacon routing in polygons. PhD
thesis, Queen’s University, Kingston, Ontario, 2013.

[15] N. J. Lennes. Theorems on the simple finite polygon and polyhedron. Am.
J. Math., 33(1/4):37, 1911.

[16] J. O’Rourke. Art gallery theorems and algorithms. Oxford University Press,
1987.

[17] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional
nonconvex polyhedra. Discrete Comput. Geom., 7(3):227–253, 1992.

[18] T. C. Shermer. A combinatorial bound for beacon-based routing in orthog-
onal polygons. In Proc. 27th Canad. Conf. Comput. Geom. (CCCG), pages
213–219, 2015.

Appendix A. Program Code to Generate Trees

1 #!/usr/bin/env python3
2 """ Generate all dual graph configurations we need to look at."""
3

4 from itertools import product
5

6 from graphviz import Digraph
7

8

9 ###
10 # Tree structure.
11 ###
12 class Node:
13 """A tree structure which allows pruning of unneeded subtrees."""
14

15 # ===
16 # General tree structure.
17 # ===
18

19 def __init__(self):
20 """A new node is simply a leaf."""
21 self.nodes = []
22

23 def add(self , n=1):
24 """ Append n additional children and return self."""
25 for _ in range(n):
26 self.nodes.append(Node ())

24

27 return self
28

29 def append(self , node):
30 """ Append a node or an iterable of nodes and return self."""
31 try:
32 for n in node:
33 self.nodes.append(n)
34 except TypeError:
35 self.nodes.append(node)
36 return self
37

38 def is_leaf(self):
39 """ Return whether this node is a leaf , i.e., has no children."""
40 return not self.nodes
41

42 # ===
43 # Graphviz.
44 # ===
45

46 def to_dot(self , graph=None , prefix=’’):
47 """ Return a Graphviz representation of the tree."""
48 if graph is None:
49 graph = Digraph ()
50 self._dot_recursion(graph , 1, prefix)
51 return graph
52

53 def _dot_recursion(self , graph , current , prefix=’’):
54 """ Recursively create Graphviz tree."""
55 graph.node(prefix + str(current), label=str(current))
56 this_number = current
57 current = current + 1
58 for child in self.nodes:
59 current , child_number = child._dot_recursion(graph , current ,
60 prefix)
61 graph.edge(prefix + str(this_number), prefix + str(child_number))
62 return current , this_number
63

64 # ===
65 # Pruning of "easy" cases.
66 # ===
67

68 def prune(self):
69 """ Remove subtrees that are easily removed."""
70 # First try to remove subtrees.
71 if self._prune () is None:
72 return None
73

74 # Call prune() for all children and filter out children that were.
75 # removed
76 self.nodes = list(filter(lambda x: x is not None ,
77 map(Node.prune , self.nodes)))
78

79 # Sort children after pruning to have a canonical structure.
80 self.nodes.sort()
81

82 # Try pruning easy subtrees again. Maybe pruning the children created
83 # a prunable configuration again.
84 return self._prune ()
85

86 def _prune(self):
87 """ Remove subtrees that are easily removed."""
88 if len(self.nodes) == 3:
89 if all(n.is_leaf () for n in self.nodes):
90 # Case (i): Figure 5.4(a): This is s2
91 # Three children that are leaf nodes: Remove all of them.
92 self.nodes = []
93 elif all(len(n.nodes) == 1 and n.nodes [0]. is_leaf ()
94 for n in self.nodes):

25

95 # Case (iii)(3): Figure 5.4(e): This is s3
96 # Three children with one child leaf each: Remove two
97 # children.
98 self.nodes.pop()
99 self.nodes.pop()

100 if len(self.nodes) == 2:
101 if all(n.is_leaf () for n in self.nodes):
102 # Case (ii): Figure 5.4(b): This is s2
103 # Two children that are leaf nodes: Remove both including
104 # the parent node.
105 return None
106 if len(self.nodes) == 1:
107 if len(self.nodes [0]. nodes) == 1:
108 if self.nodes [0]. nodes [0]. is_leaf ():
109 # Case (iii)(1): Figure 5.4(c): This is s3
110 # A chain of three nodes: Remove all of them.
111 return None
112 if len(self.nodes) >= 2:
113 leaves = [n for n in self.nodes if n.is_leaf ()]
114 leaves2 = [n for n in self.nodes if len(n.nodes) == 1 and
115 n.nodes [0]. is_leaf ()]
116 if leaves and leaves2:
117 # Case (iii)(2): Figure 5.4(d): This is s3
118 # One leaf child and one child with a single leaf child:
119 # Remove both children.
120 self.nodes.remove(leaves [0])
121 self.nodes.remove(leaves2 [0])
122

123 # Return self to indicate that the node itself is not to be removed.
124 return self
125

126 # ===
127 # Make trees comparable.
128 # ===
129

130 def __eq__(self , other):
131 """
132 Compare equality of two nodes.
133

134 Two nodes are equal if they have the same number of children and
135 every child is equal to the respective child of the other node.
136 """
137 if other is None:
138 return False
139 if len(other.nodes) != len(self.nodes):
140 return False
141 for this , that in zip(self.nodes , other.nodes):
142 if this != that:
143 return False
144 return True
145

146 def __lt__(self , other):
147 """
148 Compare whether a node is smaller than another node.
149

150 A node is smaller then another node if it has more direct children or
151 if any of the children is smaller than the respective other child.
152 """
153 if len(self.nodes) != len(other.nodes):
154 return len(self.nodes) > len(other.nodes)
155

156 for this , that in zip(self.nodes , other.nodes):
157 if this < that:
158 return True
159 if that < this:
160 return False
161

162 return True

26

163

164 # ===
165 # String representation and hash value for uniqueness.
166 # ===
167

168 def __str__(self):
169 """ Generate a bracket term representing the tree."""
170 return ’(’ + ’’.join(str(n) for n in self.nodes) + ’)’
171

172 def __repr__(self):
173 """ Terminal representation."""
174 return str(self)
175

176 def __hash__(self):
177 """ Hash value for uniqueness."""
178 return hash(str(self))
179

180

181 ###
182 # Generate all trees with certain maximum depth.
183 ###
184 def all_trees(depth):
185 """
186 Yield all trees with a given maximum depth.
187

188 The trees are created recursively by appending combinations of trees of
189 depth -1 to a node.
190 """
191 if depth == 1:
192 # Create a node with 0, 1, 2, and 3 children.
193 for i in range (4):
194 yield Node ().add(i)
195 else:
196 # Append 0, 1, 2, or 3 children.
197 for number_of_children in range (4):
198 # Create as many iterators of the next lower depth as there
199 # should be children appended.
200 next_level_iterators = []
201 for _ in range(number_of_children):
202 next_level_iterators.append(all_trees(depth - 1))
203

204 # Combine all possible combinations of the iterators and add them
205 # to a new node.
206 for subtrees in product (* next_level_iterators):
207 yield Node (). append(subtrees)
208

209

210 def iterator_len(iterator):
211 """
212 Return the number of elements in an iterator.
213

214 The iterator is consumed by calling this function.
215 """
216 length = 0
217 for _ in iterator:
218 length += 1
219 return length
220

221

222 ###
223 # Main program.
224 ###
225 if __name__ == ’__main__ ’:
226 # The maximum depth of the tree is 3
227 depth = 3
228 number_of_combinations = iterator_len(all_trees(depth))
229 # Start with the first tree
230 current = 1

27

231

232 # A container for all distinct non -prunable trees
233 trees = set()
234

235 # Iterate through all different trees of maximum depth
236 for tree in all_trees(depth):
237 # Prune "easy" cases
238 tree = tree.prune()
239 # Add tree to set of trees if it was not pruned completely
240 if tree is not None:
241 trees.add(tree)
242

243 # Debug output
244 print(’\r{percent :.2f}% ({ current} / {all}) - trees: {trees}’
245 .format(percent =100 * current / number_of_combinations ,
246 current=current ,
247 all=number_of_combinations ,
248 trees=len(trees)),
249 end=’’, flush=True)
250 current += 1
251

252 # Sum up the number of trees
253 print()
254 print(len(trees), ’trees ’)
255

256 # Create a document with all non -prunable trees
257 g = Digraph ()
258 prefix = 1
259 for tree in trees:
260 tree.to_dot(g, str(prefix) + ’_’)
261 prefix += 1
262 g.render(’trees’)

28

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Two-dimensional Upper Bound
	2.2 Tetrahedral Decompositions

	3 An Upper Bound for Beacon-based Routing
	4 A Lower Bound for Beacon-based Routing
	5 A Tight Bound for Beacon-based Routing
	6 Conclusion
	Appendix A Program Code to Generate Trees

