Skip to main content

When is Red-Blue Nonblocker Fixed-Parameter Tractable?

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Abstract

In the Red-Blue Nonblocker problem, the input is a bipartite graph \(G=(R \uplus B, E)\) and an integer k, and the question is whether one can select at least k vertices from R so that every vertex in B has a neighbor in R that was not selected. While the problem is W[1]-complete for parameter k, a related problem, Nonblocker, is FPT for parameter k. In the Nonblocker problem, we are given a graph H and an integer k, and the question is whether one can select at least k vertices so that every selected vertex has a neighbor that was not selected. There is also a simple reduction from Nonblocker to Red-Blue Nonblocker, creating two copies of the vertex set and adding an edge between two vertices in different copies if they correspond to the same vertex or to adjacent vertices. We give FPT algorithms for Red-Blue Nonblocker instances that are the result of this transformation – we call these instances symmetric. This is not achieved by playing back the entire transformation, since this problem is NP-complete, but by a kernelization argument that is inspired by playing back the transformation only for certain well-structured parts of the instance. We also give an FPT algorithm for almost symmetric instances, where we assume the symmetry relation is part of the input.

Next, we augment the parameter by \(\ell = \left| B \right| /\left| R \right| \). Somewhat surprisingly, Red-Blue Nonblocker is W[1]-hard for the parameter \(k+\ell \), but becomes FPT if no vertex in B has degree 1. The FPT algorithm relies on a structural argument where we show that when |R| is large with respect to k and \(\ell \), we can greedily compute a red-blue nonblocker of size at least k. The same results also hold if we augment the parameter by \(d_R\) instead of \(\ell \), where \(d_R\) is the average degree of the vertices in R.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, the variant where all vertices have degree at most s was thought to be W[1]-complete for a long time [5], and Downey and Fellows [6] report that Alexander Vardy spotted a flaw in their initial proof.

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002). https://doi.org/10.1007/s00453-001-0116-5

    Article  MathSciNet  MATH  Google Scholar 

  2. Cairns, G., Mendan, S.: Symmetric bipartite graphs and graphs with loops. Discrete Math. Theor. Comput. Sci. 17(1), 97–102 (2015). http://dmtcs.episciences.org/2119

    MathSciNet  MATH  Google Scholar 

  3. Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: nonblocker: parameterized algorithmics for minimum dominating set. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 237–245. Springer, Heidelberg (2006). https://doi.org/10.1007/11611257_21

    Chapter  Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995). https://doi.org/10.1016/0304-3975(94)00097-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  MATH  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  7. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009). https://doi.org/10.1145/1552285.1552286

    Article  MathSciNet  MATH  Google Scholar 

  8. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0_21

    Chapter  Google Scholar 

  9. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4(2), 209–214 (2006). https://doi.org/10.1016/j.jda.2005.03.002

    Article  MathSciNet  MATH  Google Scholar 

  10. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997). https://doi.org/10.1007/BF02523693

    Article  MathSciNet  MATH  Google Scholar 

  11. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4_4

    Chapter  Google Scholar 

  12. Kanj, I.A., Xia, G.: When is weighted satisfiability FPT? In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 451–462. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_39

    Chapter  Google Scholar 

  13. Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM J. Comput. 10(1), 11–21 (1981). https://doi.org/10.1137/0210002

    Article  MathSciNet  MATH  Google Scholar 

  14. McCuaig, W., Shepherd, F.B.: Domination in graphs with minimum degree two. J. Graph Theory 13(6), 749–762 (1989). https://doi.org/10.1002/jgt.3190130610

    Article  MathSciNet  MATH  Google Scholar 

  15. Ore, O.: Theory of Graphs. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1962)

    Book  MATH  Google Scholar 

  16. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48, 436–452 (1941). In Hungarian

    Google Scholar 

Download references

Acknowledgments

Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048). This work received support under the ARC’s Discovery Projects funding scheme (DP150101134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Gaspers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaspers, S., Gudmundsson, J., Horton, M., Rümmele, S. (2018). When is Red-Blue Nonblocker Fixed-Parameter Tractable?. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics