Abstract
Identifying Relevant Sets, i.e., variable subsets that exhibit a coordinated behavior, in complex systems is a very relevant research topic. Systems that exhibit complex dynamics are, for example, social networks, which are characterized by complex and dynamic relationships among users. A challenging topic within this context regards the identification of communities or subsets of users, both within the whole network and within specific groups. We applied the Relevance Index method, which has been shown to be effective in many situations, to the study of communities of users in the Facebook group of the Italian association of patients affected by Hidradenitis Suppurativa. Since the need for computing the Relevance Index for each possible variable subset of users makes the exhaustive computation unfeasible, we resorted to the help of an efficient niching evolutionary metaheuristic, hybridized with local searches. The communities detected through the aforementioned method have been studied to search similarities in terms of number of posts, sentiments, number of contacts, roles, behaviors, etc. The results demonstrate that it is possible to detect such subsets of users in the particular Facebook group we analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Prokopenko, M., Boschetti, F., Ryan, A.J.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)
Villani, M., Filisetti, A., Benedettini, S., Roli, A., Lane, D., Serra, R.: The detection of intermediate-level emergent structures and patterns. In: Miglino, O., et al. (eds.) Advances in Artificial Life, ECAL 2013, pp. 372–378. The MIT Press (2013). http://mitpress.mit.edu/books/advances-artificial-life-ecal-2013
Pecori, R.: A comparison analysis of trust-adaptive approaches to deliver signed public keys in P2P systems. In: 2015 7th International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5, July 2015
Pecori, R., Veltri, L.: 3AKEP: triple-authenticated key exchange protocol for peer-to-peer VoIP applications. Comput. Commun. 85, 28–40 (2016)
Canale, S., Giorgio, A.D., Lisi, F., Panfili, M., Celsi, L.R., Suraci, V., Priscoli, F.D.: A future internet oriented user centric extended intelligent transportation system. In: 2016 24th Mediterranean Conference on Control and Automation (MED), pp. 1133–1139, June 2016
Fornacciari, P., Mordonini, M., Tomaiuolo, M.: Social network and sentiment analysis on twitter: towards a combined approach. In: KDWeb (2015)
Sani, L., et al.: Efficient search of relevant structures in complex systems. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 35–48. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_4
Gershenson, C., Fernandez, N.: Complexity and information: measuring emergence, self-organization, and homeostasis at multiple scales. Complex. 18(2), 29–44 (2012)
Prokopenko, M., Lizier, J.T., Obst, O., Wang, X.R.: Relating fisher information to order parameters. Phys. Rev. E 84, 041116 (2011). https://link.aps.org/doi/10.1103/PhysRevE.84.041116
Zubillaga, D., Cruz, G., Aguilar, L.D., Zapotécatl, J., Fernández, N., Aguilar, J., Rosenblueth, D.A., Gershenson, C.: Measuring the complexity of self-organizing traffic lights. Entropy 16(5), 2384–2407 (2014). http://www.mdpi.com/1099-4300/16/5/2384
Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)
Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)
Tononi, G., McIntosh, A., Russel, D., Edelman, G.: Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 (1998)
Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Poli, I., Serra, R.: On some properties of information theoretical measures for the study of complex systems. In: Pizzuti, C., Spezzano, G. (eds.) WIVACE 2014. CCIS, vol. 445, pp. 140–150. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12745-3_12
Scott, J.: Social Network Analysis. Sage Publications (2017)
Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms. arXiv preprint arXiv:0711.0491 (2007)
Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_107
Li, J., Song, Y.: Community detection in complex networks using extended compact genetic algorithm. Soft Comput. 17(6), 925–937 (2013)
Guerrero, M., Montoya, F.G., Baos, R., Alcayde, A., Gil, C.: Adaptive community detection in complex networks using genetic algorithms. Neurocomputing 266(Suppl. C), 101–113 (2017)
Bucur, D., Iacca, G., Marcelli, A., Squillero, G., Tonda, A.: Multi-objective evolutionary algorithms for influence maximization in social networks. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 221–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_15
Cover, T., Thomas, A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)
Vicari, E., et al.: GPU-based parallel search of relevant variable sets in complex systems. In: Rossi, F., Piotto, S., Concilio, S. (eds.) WIVACE 2016. CCIS, vol. 708, pp. 14–25. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57711-1_2
Filisetti, A., Villani, M., Roli, A., Fiorucci, M., Serra, R.: Exploring the organisation of complex systems through the dynamical interactions among their relevant subsets. In: Andrews, P. et al. (ed.) Proceedings of the European Conference on Artificial Life 2015, ECAL 2015, pp. 286–293. The MIT Press (2015)
Lombardo, G., Ferrari, A., Fornacciari, P., Mordonini, M., Sani, L., Tomaiuolo, M.: Dynamics of emotions and relations in a facebook group of patients with hidradenitis suppurativa. In: Guidi, B., Ricci, L., Calafate, C.T., Gaggi, O., Marquez-Barja, J. (eds.) GOODTECHS 2017. LNICST, vol. 233, pp. 269–278. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76111-4_27
Angiani, G., Cagnoni, S., Chuzhikova, N., Fornacciari, P., Mordonini, M., Tomaiuolo, M.: Flat and hierarchical classifiers for detecting emotion in tweets. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 51–64. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49130-1_5
Parrott, W.G.: Emotions in Social Psychology: Essential Readings. Psychology Press, New York (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Sani, L., Lombardo, G., Pecori, R., Fornacciari, P., Mordonini, M., Cagnoni, S. (2018). Social Relevance Index for Studying Communities in a Facebook Group of Patients. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-77538-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77537-1
Online ISBN: 978-3-319-77538-8
eBook Packages: Computer ScienceComputer Science (R0)