Skip to main content

Toward the Online Visualisation of Algorithm Performance for Parameter Selection

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

A visualisation method is presented that is intended to assist evolutionary algorithm users with the parametrisation of their algorithms. The visualisation method presents the convergence and diversity properties such that different parametrisations can be easily compared, and poor performing parameter sets can be easily identified and discarded. The efficacy of the visualisation is presented using a set of benchmark optimisation problems from the literature, as well as a benchmark water distribution network design problem. Results show that it is possible to observe the different performance caused by different parametrisations. Future work discusses the potential of this visualisation within an online tool that will enable a user to discard poor parametrisations as they execute to free up resources for better ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Herein the term parameter is used to refer to algorithm parameters; decision variable is used to refer to an aspect of a solution’s design, to avoid confusion.

References

  1. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp. 825–830, May 2002

    Google Scholar 

  2. Bhattacharjee, K.S., Singh, H.K., Ryan, M., Ray, T.: Bridging the gap: many-objective optimization and informed decision-making. IEEE Trans. Evol. Comput. 21(5), 813–820 (2017)

    Article  Google Scholar 

  3. Walker, D.J., Everson, R.M., Fieldsend, J.E.: Visualising mutually non-dominating solution sets in many-objective optimization. IEEE Trans. Evol. Comput. 17(2), 165–184 (2013)

    Article  Google Scholar 

  4. Craven, M.J., Jimbo, H.C.: EA stability visualization: perturbations, metrics and performance. In: Proceedings of Visualisation in Genetic and Evolutionary Computation (VizGEC 2014), Held at GECCO 2014 (2014)

    Google Scholar 

  5. Polheim, H.: Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 533–540 (1999)

    Google Scholar 

  6. Kerren, A., Egger, T.: EAVis: a visualisation tool for evolutionary algorithms. In: Proceedings of 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 299–301 (2005)

    Google Scholar 

  7. Hart, E., Ross, P.: GAVEL - a new tool for genetic algorithm visualization. IEEE Trans. Evol. Comput. 5(4), 335–348 (2001)

    Article  Google Scholar 

  8. Keedwell, E., Johns, M., Savić, D.: Spatial and temporal visualisation of evolutionary algorithm decisions in water distribution network optimisation. In: GECCO Companion 2015 Proceedings of Visualisation in Genetic and Evolutionary Computation (VizGEC 2015) Held at GECCO 2015, pp. 941–948 (2015)

    Google Scholar 

  9. Burlacu, B., Affenzeller, M., Kommenda, M., Winkler, S., Kronberger, G.: Visualization of genetic lineages and inheritance information in genetic programming. In: GECCO Companion 2013 Proceedings of Visualisation in Genetic and Evolutionary Computation (VizGEC 2013) Held at GECCO 2013, pp. 1351–1358 (2013)

    Google Scholar 

  10. Fleischer, M.: The measure of Pareto optima applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_37

    Chapter  Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 231–240. Springer, London (1998). https://doi.org/10.1007/978-1-4471-0427-8_25

    Chapter  Google Scholar 

  13. Garza-Fabre, M., Toscano-Pulido, G., Coello, C.: Two novel approaches for many-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 4480–4487, July 2010

    Google Scholar 

  14. Schaake, J., Lai, D.: Linear programming and dynamic programming application to water distribution network design. Technical report. MIT (1969)

    Google Scholar 

  15. Walker, D.J., Keedwell, E., Savić, D.: Multi-objective optimisation of a water distribution network with a sequence-based selection hyper-heuristic. In: Proceedings of Computing and Control in the Water Industry (CCWI 2016) (2016)

    Google Scholar 

  16. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Walker, D.J., Craven, M.J. (2018). Toward the Online Visualisation of Algorithm Performance for Parameter Selection. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics