Skip to main content

Robust Evolutionary Optimization Based on Coevolution

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

  • 2373 Accesses

Abstract

A way to deal with uncertainties in the fitness function of an optimization problem is robust optimization, which optimizes the expected value of the fitness. In the context of evolutionary optimization, it is a common practice to compute the expected value of the fitness approximately with the help of Monte-Carlo simulation. This approach requires a lot of evaluations of the fitness function in order to evaluate an individual and thus it can be very compute-intensive.

In the present paper, we propose a coevolution-based approach for the robust optimization of problems with a fitness function basically depending on discrete random variables, which conditionally depend on the decision variables. Experiments on three benchmark functions show that the approach yields a good trade-off between the number of required fitness function evaluations and the quality of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the rest of the paper, we assume that the optimization problem at hand is a minimization problem.

  2. 2.

    Since \({\varvec{Y}}\) is assumed to be discrete, g might be undefined for \(\mathbb {E}({\varvec{Y}}|{\varvec{x}})\). In this case, the most probable value of \({\varvec{Y}}\) given \({\varvec{x}}\) can be used instead of the expected value.

References

  1. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evol. Comp. 9(3), 303–317 (2005)

    Article  Google Scholar 

  2. Beyer, H.G., Sendhoff, B.: Robust optimization - a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33), 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Leon, V.J., Wu, S.D., Storer, R.H.: Robustness measures and robust scheduling for job shops. IIE Trans. 26(5), 32–43 (1994)

    Article  Google Scholar 

  4. Wiesmann, D., Hammel, U., Bäck, T.: Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Trans. Evol. Comp. 2(4), 162–167 (1998)

    Article  Google Scholar 

  5. Hacker, S., Lewis, K.: Robust design through the use of a hybrid genetic algorithm. In: Proceedings of 28th Design Automation Conference, pp. 703–712. The American Society of Mechanical Engineers (2002)

    Google Scholar 

  6. Singh, A., Minsker, B.: Uncertainty based multi-objective optimization of groundwater remediation at the umatilla chemical depot. In: Proceedings of World Water and Environmetal Resources Congress, pp. 3589–3598 (2004)

    Google Scholar 

  7. Wang, H., Kim, N., Kim, Y.J.: Safety envelope for load tolerance and its application to fatigue reliability design. J. Mech. Des. 128(4), 919–927 (2006)

    Article  Google Scholar 

  8. Kavakeb, S., Nguyen, T.T., Yang, Z., Jenkinson, I.: Identifying the robust number of intelligent autonomous vehicles in container terminals. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 829–840. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4_67

    Google Scholar 

  9. Loughlin, D.H., Ranjithan, S.R.: Chance-constrained genetic algorithms. In: Proceedings of GECCO 1999, pp. 369–376. Morgan Kaufmann Publishers Inc., San Francisco (1999)

    Google Scholar 

  10. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Branke, J.: Creating robust solutions by means of evolutionary algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 119–128. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056855

    Chapter  Google Scholar 

  12. Aizawa, A.N., Wah, B.W.: Dynamic control of genetic algorithms in a noisy environment. In: Proceedings of 5th International Conference on Genetic Algorithms, pp. 48–55. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  13. Lee, K.H., Park, G.J.: A global robust optimization using kriging based approximation model. JSME Int. J. Ser. Mech. Syst. Mach. Elem. Manuf. 49(3), 779–788 (2006)

    Google Scholar 

  14. Paenke, I., Branke, J., Jin, Y.: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation. IEEE Trans. Evol. Comp. 10(4), 405–420 (2006)

    Article  Google Scholar 

  15. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  18. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  19. Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: Proceedings of IEEE CEC, pp. 1762–1769 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Limmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Limmer, S., Rodemann, T. (2018). Robust Evolutionary Optimization Based on Coevolution. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics