Skip to main content

Data Based Stock Portfolio Construction Using Computational Intelligence

  • Conference paper
  • First Online:
Internet Science (INSCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10750))

Included in the following conference series:

Abstract

The stock market is everywhere in our lives and stocks are sold and bought daily. Many people believe that investing in stocks is one of the most profitable and easiest ways to make money. The lure of easy profit can be proven erroneous when starting to invest in stocks, as stock portfolio construction and management processes are laborious. Constructing and managing a portfolio is multi stage and multi criteria problem and many of the models proposed are based on supporting only one stage. Moreover, available online data may be confusing as there is no clear evidence of how to use and clarify it. Therefore, in this paper, we propose a full-scale model that will exploit open data and will support portfolio management during all stages using Computational Intelligence. Available fundamental data will be used to evaluate stocks using Genetic Algorithms. Open past data of stock prices will be used for stock forecasting using a Multi Layer Perceptron. Eventually, using all the results of precedent stages a portfolio optimization will be implemented using Genetic Algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoaf, J.S., Foster, J.A.: A genetic algorithm solution to the efficient set problem: a technique for portfolio selection based on the Markowitz model. In: Annual Meeting, vol. 2, pp. 571–573. Decision Sciences Institute, Orlando (1996)

    Google Scholar 

  2. Markowitz, H.: Portfolio selection. J. Finan. 7(1), 77–91 (1952)

    Google Scholar 

  3. Omisore, I., Yusuf, M., Christopher, N.: The modern portfolio theory as an investment decision tool. J. Account. Tax. 4(2), 19–28 (2012)

    Google Scholar 

  4. Oh, K.J., Kim, T.Y., Min, S.H., Lee, H.Y.: Portfolio algorithm based on portfolio beta using genetic algorithm. Expert Syst. Appl. 30(3), 527–534 (2006)

    Article  Google Scholar 

  5. Muhammad, A., King, G.A.: Foreign exchange market forecasting using evolutionary fuzzy networks. In: IEEE/IAFE Computational Intelligence for Financial Engineering, pp. 213–219 (1997)

    Google Scholar 

  6. Pandari, A.R., Azar, A., Shavazi, A.R.: Genetic algorithms for portfolio selection problems with nonlinear objectives. Afr. J. Bus. Manag. 6(20), 6209–6216 (2012)

    Google Scholar 

  7. Taylor, M.P., Allen, H.: The use of technical analysis in the foreign exchange market. J. Int. Money Finan. 11(3), 304–314 (1992)

    Article  Google Scholar 

  8. Richardson, S., Tuna, İ., Wysocki, P.: Accounting anomalies and fundamental analysis: a review of recent research advances. J. Account. Econ. 50(2–3), 410–454 (2010)

    Article  Google Scholar 

  9. Edwards, R.D., Bassetti, W.H.C., Magee, J.: Technical Analysis of Stock Trends, 9th edn. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  10. Bauman, M.P.: A review of fundamental analysis research in accounting. J. Account. Lit. 15, 1–33 (1996)

    Google Scholar 

  11. Chan, L.K.C., Hamao, Y., Lakonisjok, J.: Fundamentals and stock returns in Japan. J. Finan. 46(5), 1739–1764 (1991)

    Article  Google Scholar 

  12. Chin, J.Y.F., Prevost, A.K., Gottesman, A.A.: Contrarian investing in a small capitalization market: evidence from New Zealand. Fin. Rev. 37, 421–446 (2002)

    Article  Google Scholar 

  13. Kwag, S.-W.(A.), Lee, S.W.: Value investing and the business cycle. J. Finan. Plann. 7, 1–11 (2006)

    Google Scholar 

  14. London Stock Exchange market Homepage. http://www.londonstockexchange.com. Accessed 08 Aug 2017

  15. McCall, J.: Genetic algorithms for modeling and optimization. J. Comput. Appl. Math. 184, 205–222 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning, 1st edn. Addison Wesley, Boston (1989)

    MATH  Google Scholar 

  17. Kumar, A.: Encoding schemes in genetic algorithm. Int. J. Adv. Res. IT Eng. 2(3), 1–7 (2013)

    Google Scholar 

  18. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  19. Evans, J.L., Archer, S.H.: Diversification and the reduction of dispersion: an empirical analysis. J. Finan. 23(5), 761–767 (1968)

    Google Scholar 

  20. Nicholson, S.F.: Price - earnings ratio. Finan. Anal. J. 16(16), 43–45 (1960)

    Article  Google Scholar 

  21. Dreman, D.N., Lufkin, E.A.: Investor overreaction: evidence that its basis is psychological. J. Psychol. Financ. Mark. 1(1), 61–75 (2000)

    Article  Google Scholar 

  22. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithm. Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

    Article  Google Scholar 

  23. Umbarkar, A.J., Sheth, P.D.: Crossover operators in genetic algorithms: a review. ICTAT J. Soft Comput. 06(01), 1083–1092 (2015)

    Article  Google Scholar 

  24. Abdoun, O., Abouchabaka, J., Tajani, C.: Analyzing the performance of mutation operators to solve the travelling salesman problem. JES Int. J. Emerg. Sci. 2(1), 61–77 (2014)

    Google Scholar 

  25. Tsenov, A.: Simulated annealing and genetic algorithm in telecommunications network planning. Int. J. Inf. Math. Sci. 2(4), 240–245 (2006)

    Google Scholar 

  26. Mayilvaganan, M., Geethamani, G.S.: Performance comparison of roulette wheel selection and steady state selection in genetic nucleotide sequence. Int. J. Innov. Res. Comput. Commun. Eng. 3(4), 4271–4276 (2015)

    Google Scholar 

  27. Lin, W.-Y., Lee, W.-Y., Hong, T.-P.: Adapting crossover and mutation rates in genetic algorithms. J. Inf. Sci. Eng. 19, 889–903 (2003)

    Google Scholar 

  28. Jong, K.A.D.: Adaptive system design: a genetic approach. IEEE Trans. Syst. Man Cybern. 10, 566–574 (1980)

    Article  MathSciNet  Google Scholar 

  29. Schaffer, J.D. et al.: A study of control parameters affecting the online performance of genetic algorithms for function optimization. In: Proceeding of the Third International Conference on Genetic Algorithms, pp. 51–60 (1989)

    Google Scholar 

  30. Bäck, T.: Optimal mutation rates in genetic search. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 2–8 (1993)

    Google Scholar 

  31. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16, 122–128 (1986)

    Article  Google Scholar 

  32. Schaffer, J.D., Morishima, A.: An adaptive crossover distribution mechanism for genetic algorithms. In: Proceeding of the Second International Conference on Genetic Algorithms, pp. 36–40 (1987)

    Google Scholar 

  33. Koumousis, V.K., Katsaras, C.P.: Sawtooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Article  Google Scholar 

  34. Pelikan, M. Goldberg, D.E., Cantu-Paz, E.: Bayesian optimization algorithm, population sizing, and time to convergence. Technical report, Illinois Genetic Algorithms Laboratory, University of Illinois (2000)

    Google Scholar 

  35. Piszcz, A., Soule, T.: Genetic programming: optimal population sizes for varying complexity problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 953–954 (2006)

    Google Scholar 

  36. Lobo, F.G., Goldberg, D.E.: The parameterless genetic algorithm in practice. Inf. Sci. Inform. Comput Sci. 167(1–4), 217–232 (2004)

    MATH  Google Scholar 

  37. Lobo, F.G., Lima, C.F.: A review of adaptive population sizing schemes in genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 228–234 (2005)

    Google Scholar 

  38. Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: Federated Conference on Computer Science and Information Systems, pp. 371–376 (2013)

    Google Scholar 

  39. Thawornwong, S., Enke, D.: Forecasting stock returns with artificial neural networks. In: Zhang, G.P. (ed.) Neural Networks in Business Forecasting, pp. 47–79 (2004). https://doi.org/10.4018/978-1-59140-176-6.ch003

  40. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Sciences of the U.S.A., pp. 2554–2558 (1982)

    Google Scholar 

  41. Kohonen, T.: Self Organization and Associative Memory, 2nd edn. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-88163-3

    Book  MATH  Google Scholar 

  42. Manry, M.T., Chandrasekaran, H., Hsieh, C.: Signal processing using the multilayer perceptron. In: Hu, Y.H., Hwang, J. (eds.) Handbook of Neural Network Signal Processing, pp. 1–29. CRC Press, Boca Raton (2001)

    Google Scholar 

  43. Johansson, E.M., Dowla, F.U., Goodman, D.M.: Backpropagation learning for multilayer feedforward neural networks using the conjugate gradient method. Int. J. Neural Syst. 2(4), 291–301 (1991)

    Article  Google Scholar 

  44. Karsoliya, S.: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends Technol. 3(6), 714–717 (2012)

    Google Scholar 

  45. Hecht-Nielsen, R.: Kolmogorov’s mapping neural network existence theorem. In: IEEE First Annual International Conference on Neural Networks, vol. 3, pp. 11–13 (1987)

    Google Scholar 

  46. Huang, G.-B., Babri, H.: General approximation theorem on feedforward networks. In: International Conference on Information, Communications and Signal Processing, Singapore, 9–12 September, pp. 698–702 (1997)

    Google Scholar 

  47. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_2

    Chapter  Google Scholar 

  48. Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73190-0

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimina Dimara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimara, A., Anagnostopoulos, CN. (2018). Data Based Stock Portfolio Construction Using Computational Intelligence. In: Diplaris, S., Satsiou, A., Følstad, A., Vafopoulos, M., Vilarinho, T. (eds) Internet Science. INSCI 2017. Lecture Notes in Computer Science(), vol 10750. Springer, Cham. https://doi.org/10.1007/978-3-319-77547-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77547-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77546-3

  • Online ISBN: 978-3-319-77547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics