Abstract
A non-photorealistic rendering system implemented with Cartesian genetic programming (CGP) is discussed. The system is based on Baniasadi’s NPR system using tree-based GP. The CGP implementation uses a more economical representation of rendering expressions compared to the tree-based system. The system borrows their many-objective fitness evaluation scheme, which uses a model of aesthetics, colour testing, and image matching. GPU acceleration of the paint stroke application results in up to 6 times faster rendering times compared to CPU-based renderings. The convergence dynamics of CGP’s \(\mu +\lambda \) evolutionary strategy was more unstable than conventional GP runs with large populations. One possible reason may be the sensitivity of the smaller \(\mu +\lambda \) population to the many-objective ranking scheme, especially when objectives are in conflict with each other. This instability is arguably an advantage as an exploratory tool, especially when considering the subjectivity inherent in evolutionary art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bentley, P., Corne, D.: Creative Evolutionary Systems. Morgan Kaufmann, San Francisco (2002)
Romero, J., Machado, P.: The Art of Artificial Evolution. Natural Computing Series. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72877-1
Dorin, A.: Aesthetic fitness and artificial evolution for the selection of imagery from the mythical infinite library. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 659–668. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44811-X_76
Dawkins, R.: The Blind Watchmaker. W. W. Norton & Company Inc., New York (1986)
Sims, K.: Interactive evolution of equations for procedural models. Visual Comput. 9, 466–476 (1993)
Graf, J., Banzhaf, W.: Interactive evolution of images. In: Proceedings of the International Conference on Evolutionary Programming, pp. 53–65 (1995)
Yip, C.: Evolving image filters. Master’s thesis, Imperial College of Science, Technology, and Medicine, September 2004
Bergen, S., Ross, B.: Aesthetic 3D model evolution. Genet. Program Evolvable Mach. 4(3), 339–367 (2013)
Gooch, B., Gooch, A.: Non-photorealistic Rendering. A.K. Peters, Natick (2001)
Strothotte, T., Schlechtweg, S.: Non-photorealistic Computer Graphics: Modeling, Rendering, and Animation. Morgan Kaufmann, San Francisco (2002)
Kang, H., Chakraborty, U., Chui, C., He, W.: Multi-scale stroke-based rendering by evolutionary algorithm. In: Proceedings of the International Workshop on Frontiers of Evolutionary Algorithms, JCIS, pp. 546–549 (2005)
Barile, P., Ciesielski, V., Trist, K.: Non-photorealistic rendering using genetic programming. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 299–308. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89694-4_31
Colton, S., Torres, P.: Evolving approximate image filters. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 467–477. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01129-0_53
Izadi, A., Ciesielski, V.: Evolved strokes in non photorealistic rendering. In: Proceedings of the World Academy of Science Engineering and Technology (WASET), vol. 67, pp. 1–6 (2010)
Neufeld, C., Ross, B., Ralph, W.: The evolution of artistic filters. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Natural Computing Series, pp. 335–356. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-72877-1_16
Baniasadi, M.: Genetic programming for non-photorealistic rendering. MSc thesis, Department of Computer Science, Brock University (2013)
Baniasadi, M., Ross, B.J.: Exploring non-photorealistic rendering with genetic programming. Genet. Program Evolvable Mach. 16(2), 211–239 (2015)
Bakurov, I.: Non-photorealistic rendering with Cartesian genetic programming using graphic processing units. Master’s thesis, Department of Computer Science, Brock University (2017)
Miller, J.F.: Cartesian genetic programming. In: Miller, J. (ed.) Cartesian Genetic Programming. Natural Computing Series, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17310-3_2
Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Riolo, R., Vladislavleva, E., Ritchie, M., Moore, J. (eds.) Genetic Programming Theory and Practice X, pp. 31–44. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-2_3
Ashmore, L., Miller, J.F.: Evolutionary art with Cartesian genetic programming (2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.571.9476. Accessed 20 Sept 2016
Shiraishi, M., Yamaguchi, Y.: An algorithm for automatic painterly rendering based on local source image approximation. In: Proceedings of NPAR 2000, pp. 53–58. ACM Press (2000)
Langdon, W.: Graphics processing units and genetic programming: an overview. Soft. Comput. 15, 1657–1669 (2011)
NVIDIA: CUDA enabled GPUs. https://developer.nvidia.com/cuda-gpus. Accessed 18 June 2017
Maghoumi, M.: Real-time automatic object classification and tracking using genetic programming and NVIDIA CUDA. Master’s thesis, Department of Computer Science, Brock University (2014)
Maghoumi, M.: CudaGP. https://github.com/Maghoumi/CudaGP. Accessed 18 Oct 2017
Hutter, M.: jCUDA framework. http://www.jcuda.org. Accessed 31 July 2017
Ross, B., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: CEC 2006, pp. 1087–1094, July 2006
Smith, J., Chang, S.F.: VisualSEEk: a fully automated content-based image query system. In: Proceedings of the ACM-MM, pp. 87–98 (1996)
Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 231–240. Springer, London (1998). https://doi.org/10.1007/978-1-4471-0427-8_25
Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the GECCO 2007, pp. 773–780. ACM Press (2007)
Bergen, S., Ross, B.J.: Evolutionary art using summed multi-objective ranks. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming - Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 227–244. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-7747-2_14
Acknowledgements
This research was supported by NSERC Discovery Grant RGPIN-2016-03653.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bakurov, I., Ross, B.J. (2018). Non-photorealistic Rendering with Cartesian Genetic Programming Using Graphics Processing Units. In: Liapis, A., Romero Cardalda, J., Ekárt, A. (eds) Computational Intelligence in Music, Sound, Art and Design. EvoMUSART 2018. Lecture Notes in Computer Science(), vol 10783. Springer, Cham. https://doi.org/10.1007/978-3-319-77583-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-77583-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77582-1
Online ISBN: 978-3-319-77583-8
eBook Packages: Computer ScienceComputer Science (R0)