Skip to main content

Trade-Off Between Performance, Fault Tolerance and Energy Consumption in Duplication-Based Taskgraph Scheduling

  • Conference paper
  • First Online:
Architecture of Computing Systems – ARCS 2018 (ARCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10793))

Included in the following conference series:

Abstract

Fault tolerance in parallel systems can be achieved by duplicating task executions onto several processing units, so in case one processing unit (PU) fails, the task can continue executing on another unit. Duplicating task execution affects the performance of the system in fault-free and fault cases, and its energy consumption. Currently, there are no tools for properly handling the three-variable optimization problem: Performance \(\leftrightarrow \) Fault Tolerance \(\leftrightarrow \) Energy Consumption, and no facilities for integrating it into an actual system. We present a fault-tolerant runtime system (called RUPS) for user defined schedules, in which the user can give their preferences about the trade-off between performance, energy and fault tolerance. We present an approach for determining the best trade-off for modern multicore architectures and we test RUPS on a real system to verify the accuracy of our approach itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a given voltage there is a maximum frequency and for a desired frequency there is a minimum voltage required.

References

  1. Alam, B., Kumar, A.: Fault tolerance issues in real time systems with energy minimization. Int. J. Inf. Comput. Technol. 3(10), 1001–1008 (2013)

    Google Scholar 

  2. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)

    Article  Google Scholar 

  3. Aupy, G., Benoit, A., Renaud-Goud, P., Robert, Y.: Energy-aware algorithms for task graph scheduling, replica placement and checkpoint strategies. In: Khan, S., Zomaya, A. (eds.) Handbook on Data Centers, pp. 37–80. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2092-1_2

    Google Scholar 

  4. Basmadjian, R., de Meer, H.: Evaluating and modeling power consumption of multi-core processors. In: Proceedings of the 3rd International Conference on Future Systems: Where Energy, Computing and Communication Meet (e-Energy 2012), pp. 1–10 (2012)

    Google Scholar 

  5. Bland, W.: User level failure mitigation in MPI. In: Caragiannis, I., Alexander, M., Badia, R.M., Cannataro, M., Costan, A., Danelutto, M., Desprez, F., Krammer, B., Sahuquillo, J., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par 2012. LNCS, vol. 7640, pp. 499–504. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36949-0_57

    Chapter  Google Scholar 

  6. Cai, Y., Reddy, S.M., Al-Hashimi, B.M.: Reducing the energy consumption in fault-tolerant distributed embedded systems with time-constraint. In: 8th International Symposium on Quality Electronic Design (ISQED 2007), pp. 368–373 (2007)

    Google Scholar 

  7. Cichowski, P., Keller, J., Kessler, C.: Modelling power consumption of the Intel SCC. In: Proceedings of the 6th Many-Core Applications Research Community Symposium (MARC 2012), pp. 46–51 (2012)

    Google Scholar 

  8. Eitschberger, P., Keller, J.: Efficient and fault-tolerant static scheduling for grids. In: Proceedings of the 14th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2013), pp. 1439–1448 (2013)

    Google Scholar 

  9. Eitschberger, P., Keller, J.: Energy-efficient and fault-tolerant taskgraph scheduling for manycores and grids. In: an Mey, D., et al. (eds.) Euro-Par 2013. LNCS, vol. 8374, pp. 769–778. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54420-0_75

    Chapter  Google Scholar 

  10. Fechner, B., Hönig, U., Keller, J., Schiffmann, W.: Fault-tolerant static scheduling for grids. In: Proceedings of the 13th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS 2008), pp. 1–6 (2008)

    Google Scholar 

  11. Goel, B., McKee, S.A.: A methodology for modeling dynamic and static power consumption for multicore processors. In: Proceedings of the 30th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2016), pp. 273–282 (2016)

    Google Scholar 

  12. Hashimoto, K., Tsuchiya, T., Kikuno, T.: Effective scheduling of duplicated tasks for fault tolerance in multiprocessor systems. IEICE Trans. Inf. Syst. 85, 525–534 (2002)

    Google Scholar 

  13. Hongxia, W., Xin, Q.: Dynamic replication of fault-tolerant scheduling algorithm. Open Cybern. Syst. J. 9, 2670–2676 (2015)

    Article  Google Scholar 

  14. Hönig, U., Schiffmann, W.: A comprehensive test bench for the evaluation of scheduling heuristics. In: Proceedings 16th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2004), pp. 437–442 (2004)

    Google Scholar 

  15. Kianzad, V., Bhattacharyya, S., Ou, G.: CASPER: an integrated energy-driven approach for task graph scheduling on distributed embedded systems. In: Proceedings of the 16th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP 2005) (2005)

    Google Scholar 

  16. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence constraints. Theory Comput. Syst. 43(1), 67–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Singh, J., Auluck, N.: DVFS and duplication based scheduling for optimizing power and performance in heterogeneous multiprocessors. In: Proceedings of the High Performance Computing Symposium (HPC 2014), pp. 22:1–22:8 (2014)

    Google Scholar 

  18. Takouna, I., Dawoud, W., Meinel, C.: Accurate mutlicore processor power models for power-aware resource management. In: Proceedings of the 9th IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC 2011), pp. 419–426 (2011)

    Google Scholar 

  19. Tosun, S., Mansouri, N., Kandemir, M., Ozturk, O.: An ILP formulation for task scheduling on heterogeneous chip multiprocessors. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 267–276. Springer, Heidelberg (2006). https://doi.org/10.1007/11902140_30

    Chapter  Google Scholar 

  20. Zhao, L., Ren, Y., Xiang, Y., Sakurai, K.: Fault-tolerant scheduling with dynamic number of replicas in heterogeneous systems. In: 12th IEEE International Conference on High Performance Computing and Communications (HPCC), pp. 434–441 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Eitschberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eitschberger, P., Holmbacka, S., Keller, J. (2018). Trade-Off Between Performance, Fault Tolerance and Energy Consumption in Duplication-Based Taskgraph Scheduling. In: Berekovic, M., Buchty, R., Hamann, H., Koch, D., Pionteck, T. (eds) Architecture of Computing Systems – ARCS 2018. ARCS 2018. Lecture Notes in Computer Science(), vol 10793. Springer, Cham. https://doi.org/10.1007/978-3-319-77610-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77610-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77609-5

  • Online ISBN: 978-3-319-77610-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics