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Abstract. The continuous monitoring of human gait would allow to more
objectively verify the abnormalities that arise from the most common patholo-
gies. Therefore, this manuscript proposes a real-time tool for human gait
detection from lower trunk acceleration. The vertical acceleration signal was
acquired through an IMU mounted on a waistband, a wearable device. The
proposed algorithm was based on a finite state machine (FSM) which includes a
set of suitable decision rules and the detection of Heel-Strike (HS), Foot-flat
(FF), Toe-off (TO), Mid-Stance (MS) and Heel-strike (HS) events for each leg.
Results involved 7 healthy subjects which had to walk 20 m three times with a
comfortable speed. The results showed that the proposed algorithm detects in
real-time all the mentioned events with a high accuracy and time-effectiveness
character. Also, the adaptability of the algorithm has also been verified, being
easily adapted to some gait conditions, such as for different speeds and slopes.
Further, the developed tool is modular and therefore can easily be integrated in
another robotic control system for gait rehabilitation. These findings suggest that
the proposed tool is suitable for the real-time gait analysis in real-life activities.

Keywords: Gait detection - Lower trunk - Acceleration - Real-time
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1 Introduction

Walking is one of the most common human physical activities and plays an important
role in our daily tasks. The term “gait” is used to describe the way of walking,
consisting in consecutive cycles subdivided in a sequence of events triggering transi-
tions from one gait phase to another [1].

Due to the high number of gait pathologies that currently exist, clinicians need a
simple, robust and efficient method to quantify patients’ gait abnormalities [2].
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These methods should work independently of the intra and inter gait variability of each
patient and should allow a continuous evaluation. Accurate and efficient new tools for
detecting gait events have been developed [2—4]. In fact, these new tools have proved
to be important for the assistance and rehabilitation of the human gait, since they can be
incorporated into devices, as orthoses or exoskeletons, which may be fundamental in
the recovery of the patients’ gait [1-4].

Previously, force platforms, stereo photogrammetric systems, optical bars, or
video-analysis have been used to analyze the human gait [5, 6]. However, these devices
present limitations making them not feasible for measurements on daily-life situations:
they do not allow a complete analysis of the entire gait cycle, demand special envi-
ronments and require long post-processing, especially when used for subjects with gait
abnormalities [5]. Wearable sensors, such as Inertial Measurement Units (IMUs) which
generally integrate accelerometers, gyroscopes and magnetometers, are an optimal
alternative since they allow to evaluate gait in real-time without these restrictions.
Furthermore, with the technological advances, these sensors are lighter and smaller,
making them suitable to record gait information and be embedded in wearable devices
for outdoor ambulatory applications [6].

The placement of IMUs in the body human for gait events identification, firstly
considered the lower body segments (shank and foot). However, such approaches
commonly require independent sensors for each lower limb, thus increasing the cost of
the solution and interference in the users’ daily lives [3]. In addition, the correct gait
segmentation depends in many cases on the data of more than one of the sensors
embedded in the IMU, which becomes more complex to the signal processing. Through
the acquisition of lower trunk acceleration, placing an IMU in the lower vertebral
column region (lower thoracic region and lumbar region) it is possible to obtain gait
information from both lower limbs and from a single axis. In this way, the measure-
ment of the lower torso acceleration is an efficient solution when it is intended to
segment the human gait, using just one inertial sensor and without requiring large
processing requirements [2].

In the last years, several systems have been developed to detect gait events, through
the lower trunk acceleration based on the use of IMUs [2, 3, 7-14]. The development of
these detection systems requires the use of sophisticated algorithms specially for
real-time contexts, which are actually very important for gait laboratories and outside of
rehabilitation environments towards assisted living environments. The implementation
of these algorithms varied greatly from system to system and in general, heuristic rules
and wavelet-based approaches were the most used. Further, most of the algorithms were
constructed based on the antero posterior and vertical plane. In fact, through the study of
the vertical acceleration signal (antero-posterior plane) it is possible to identify the
follow gait events: the heel strike, foot-flat, toe-off, mid-stance and heel-off for each
limb, as is depicted in Fig. 1 [2]. Also, Gonzalez et al. [3] and Alvarez et al. [7]
developed the only two systems which provided a real-time gait events detection,
namely the initial and final contact events. The gait detection was based on heuristic
roles and it were used two acceleration axes vertical and antero-posterior signals.

This paper addresses the development and validation of a novel adaptive real-time
tool for the gait event detection. The proposed system consists of one inertial sensor, in
particular, an accelerometer placed in the lower trunk at the T2-L1 inter-vertebral space.
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Fig. 1. Vertical acceleration over one stride. Adapted from [2].

Further, it includes a novel tool for gait detection through the lower trunk acceleration
signal implemented by a Finite State Machine (FSM) with decision rules and adaptive
thresholds. This tool is able to detect five gait events for each leg: Heel Strike (HS), Foot
Flat (FF), Mid-Stance (MS), Toe-Off (TO) and Heel-Off (HO). This system follows the
idea of implementing a wearable system based on the use of only one IMU, in order to
minimize the use of several devices and simplify its use by the user. Lastly, note that the
algorithm only uses one acceleration axis - the vertical orientation, aligned with the
earth’s gravitational axis, in contrast to what was presented in the literature, and espe-
cially the two systems developed for real-time segmentation of the gait [3, 7].

2 Methods

2.1 System Overview

In order to achieve all the requirements of portability and ergonomics, the system con-
sisted of a processing unit and an inertial acquisition system embedded in an adjustable
waistband for any abdominal diameter, represented in Fig. 2. In addition, it was
implemented a data storage system in order to save the inertial gait acquired data in each
trial, in a microSD card. These data were storage in the microSD card via SPI protocol.

The processing unit relies on a high-performance microcontroller Atmega 2560
(Arduino Mega) and for the acquisition system it was used an IMU, particularity, the
MPU-6050. The MPU-6050, which was the world’s first integrated 6-axis motion
tracking device, combines 3-axis gyroscope (range: £2000°%s) and 3-axis accelerom-
eter (range: =16 g)in a small 4 x 4 x 0.9 mm package. In this particular system, data
were only recorded from the accelerometer, in particular the vertical acceleration, with
a full-scale range of 2 g (enough to detect gait events through a lower trunk acqui-
sition) at a sampling frequency of 100 Hz (sufficient to measure one gait cycle).
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Fig. 2. Gait detection system developed on a waistband: the bag on the left houses the
processing unit and the data storage system, whereas the gait acquisition system, the IMU, has
been embedded so as to be placed in T2-L1 inter-vertebral space.

Due the small size, low weight and low admissible current consumption (500 + pA),
this IMU is an optimal solution for the proposed system. The communication between
the acquisition system and the processing unit was supported by the I2C protocol.

2.2 Proposed Algorithm

The proposed algorithm consists in five stages: acquisition, calibration, filtering, 1st
derivative computation and finite state machine. For the calibration routine, were
captured 500 samples which were used to calculate an offset that is withdrawn from
each of the samples subsequently acquired.

Then, each acquired sample (sample,), after calibrated, was filtered with an
exponential filter, which is ideal for a real-time implementation based on heuristic
rules, since it does not cause delays in the signal and smooths the samples. Thus, each
sample was filtered based on the following equation:

sampley,,., = w.sample, + (1 — o).sample, ;. (1)

Where, o is the smoothing factor (0 < o < 1), sample,, corresponds to the current
sample and sample,_; to the previous sample. oo was set to 0.5 by trial and error.

After filtering the sample (sample,,ﬁm,n, d), the 1 derivative was determined to detect
when the acceleration increases, decreases, or remains constant and, in order to deal
with the noise, the derivatives below a threshold (near to zero but empirically set) were
assumed as null. This allows to detect only the major variations, that usually are
associated with the local peaks. The calculation of the 1% derivative was performed
based on the following equation:

samp lendiff_derivatcd = samp lenﬁnmd — samp le”_lﬁlzered‘ (2)
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Once the 1* derivative (sample,,; ,....) is calculated and the threshold applied, it
follows the FSM implemented by means of a switch case statement, which changes the
states in accordance with the decision rules.

All these stages, Acquisition, Calibration, Filtering, 1% Derivative and FSM, are
presented in the flow chart depicted in Fig. 3. The FSM is constituted by eleven states
that correspond to ten gait events and one of reset. Each of these events corresponds to
a peak in the filtered acceleration acquired in the lower trunk, as represented in Fig. 1.
To detect each of these events, ten decision rules have been implemented that allow to
trigger from one state to other which are presented in the Table 1. Also, is indicated the
gait event corresponding to the peak in the acceleration signal.

#HS - Right Heel strike
#FF - Right Foot-lat
LTO - Left Toe-off

«MS - Right Mid-stance
HO - Right Heel-off
(HS - Left Heel strike
\FF - Left Footlat

Calibration

Filtering

oT0 - Right Toe-off
1%t Derivative |MS - Left Mid-stance
Computation HO - Left Heel-off

2% e N R - Reset

Fig. 3. Flow chart (left) and FSM (right) used to detect the gait events.

To increase the robustness of the algorithm, the thresholds used in the decision
rules were adaptively calculated every three gait cycles and the first thresholds were set
empirically. Also, after the occurrence of three gait cycles, each of the peaks corre-
sponding to a gait event was detected based on its respective peak of the previous gait
cycle, and must belong to a cadence calculated every three gait cycles. In this way, the
peaks were only valid if they belonged to this calculated interval.

It is emphasized that the filtering, as well as the calculation of the 1° derivative and
the decision rules depend on the previous sample acquired, so this is always stored at
the end of each stage (Acquisition, Calibration, Filtering, 1* Derivative and FSM). For
the first sample acquired, it is assumed that the previous sample is zero at each of the
different stages of the algorithm.

2.3 Validation

The validation of the proposed adaptive tool involved 7 healthy subjects (3 males and 4
females). These subjects present a mean age of 25.13 £ 1.01 years old, mean weight of
71.69 £ 5.84 kg and a mean height of 170.38 £ 3.48 cm. The subjects conducted
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Table 1. Gait events detected and corresponding signal acceleration peaks

Gait event Peak on Decision rules
acceleration signal
Right heel 1** Maximum local (samplenyy i < 0) & (samp len—1ug _avacs > 0)
strike
& (samplenfl > thls[maxlocall)
Right Maximum global (samp lendif/_dmrmm < O) & (samplenflmjj_dm-zmm > O)
foot-flat
& (sample,— > thyax global 1)
Left toe-off | Minimum local (samplenyy, yonud > 0) & (sample,_1,; yonud < 0)
& (Samplen—l < thmin locall)
Right 2" Maximum local (Samplendwidmm/m < O) & (Samplenfldrjjidzrivmzd > O)
mid-stance
& (sample,—1 > thapgmaxlocal1)
Right Global minimum (sampley; ynud > 0) & (samplen—14; s < 0)
heel-off
& (sample,—y < thuin giobal 1)
Left heel 1** Maximum local (sampleny, nua < 0) & (samplen-1; 0 > 0)
strike
& (sample,—1 > thismaxlocal2)
Left Maximum glObal (Samp lenzli/‘)‘_dprivarpd < 0) & (samp le"_ldrﬁ'_d"i"mfd > 0)
foot-flat
& (sample,—y > thmax global2)
Right Minimum local (samplendiff,dmam/ > 0) & (Sampleﬂ*ldiff,dmmm/ < O)
toe-off
& (sample,—; < thmintocal2)
Left 2" Maximum local (samplen i derivared < 0) & (SaWIplenf1(,,ﬁ_m,‘,m, > 0)
mid-stance
& (samplenq > chndmaxlocaIZ)
Left heel-off | Global minimum (samplenyy _sua > 0) & (sample,—14;_yua < 0)
& (Samplen—l < thyin globalZ)

walking experiments on the ground at a comfortable speed, in a distance of 20 m on
unobstructed hallway. Each participant performed 3 trials and between each trial
repetition, the waistband was removed and then replaced to assess test-retest
repeatability.

In order to obtain an effective strategy to determine the performance of the gait
identification algorithm implemented, as a ground truth, it was used two FSR sensors
(from Interlinks Electronics®) placed on the right heel and toe foot of each subject. The
gait events detected were compared with the signals from the FSRs in each gait cycle,
more properly the HS and TO. Thus, all participants’ steps performed were analyzed
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Table 2. Algorithm performance regarding its accuracy, percentage of occurrence and duration
of delays (delayed detection) and advances (earlier detection) for HS, FF, TO, MS and HS gait
events

Gait event | Accuracy (%) | Delayed (D) Advanced (A)
% (Mean & SD) ms | % | (Mean £ SD) ms
HS 98.99 11.1 [11.33 £2.52 8.3319.69 + 7.88
FF 99.98 6.03 2.17 £ 0.67 4.091.92 £ 1.24
TO 95.56 12.2 12.2 £ 3.29 5.7514.81 + 391
MS 93.94 21.8 11.8 + 4.56 9.09 |3.54 £ 1.34
HO 95.04 7.89| 10.8 + 3.55 5.4319.03 £ 3.78

and HS, FF, TO, MS and HO events were evaluated regarding its accuracy, % of
occurrence and duration of earlier and delayed detections.

3 Results and Discussion

The performance of the real-time algorithm is demonstrated in Table 2, where it is
possible to analyze the accuracy of correct identification of HS, FF, TO, MS and HS
event (considering both feet), in percentage. Besides the accuracy percentage, it is also
presented the percentage of delayed and advanced gait events detection and the delay
and advance delay times, comparing with the FSR data.

In Table 2, it is verified that the proposed algorithm for gait detection is accurate in
the detection of all events, with an accuracy above 93.94%, being the HS and MS
events with more accuracy (98.99% and 99.98%, respectively). On the other hand, MS
and HS were the events with less accuracy due to changes in cadence and local and
global peaks very close. Also, the accuracy is affected by the high susceptibility to
noise when using the acceleration signal from the built-in accelerometer of the IMU.

Concerning to the percentage of occurrences of delays and advances, it is
observable that the worst results were in the MS event (D: 21.8% and A: 9.09%).
The MS corresponds to a maximum local in the trunk vertical acceleration signal, thus
this observation is due to the fact that the algorithm detects local peaks that are very
close to the local maximum which is supposed to be detected. Also, it was verified that
the worst measured delayed (11.8 ms) and advanced (9.98 ms) results to this event
does not contribute with significant delay and advanced time in the gait detection, since
a normal gait cycle is 1.15 s [15].

It was also found that the delays measured for the initial and final foot-contact (HS -
11.33 ms and TO - 12.2 ms, respectively) were lower than those measured by the
Gonzélez’ real-time algorithm proposed (117 and 34 ms, respectively) through the
trunk acceleration [3]. These results are probably due to the filter implemented in [3],
since it was used a low-order 11-order low-pass filter, which introduces an undesirable
delay to the gait events detection, especially when it comes to a real-time implemen-
tation. On the other hand, in our tool it was implemented a filter exponential which only
smooth the signal, not introducing delays in the real-time detection. Also, it is
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Fig. 4. Representation of gait events detection throughout the vertical acceleration (m/s%) and
FSRs output, in three-steps of a subject. It is pointed out the value of the adaptive thresholds (in
this example for the TO detection for the right and left foot, a local minimum) and the value of
the cadence (a specific defined range for each gait event) for the HS event.

emphasized that our tool it is based on a set of decision rules implemented by a FSM,
depending only on the acquisition of the signal on a single axis. Thereby, the delay is
smaller when compared to the algorithm presented in [3], which is based on a set of
heuristic rules (zero-crossing) through the analysis of two acceleration axes.

Figure 4 depicts the gait events detection in three-steps of a subject. It is verified that
the implemented algorithm detects the right/left heel strike (HS - 1st local maximum),
right/left foot-flat (FF - global maximum), right/left toe-off (TO - local minimum),
right/left mid-stance (MS - 2nd local maximum), and right/left heel-off (HO - global
minimum), for the right and left limb, respectively. These detections provide an inno-
vative character to the proposed tool since all the real-time gait detection algorithms on
the literature only detected the initial and final foot-contact on the ground [3, 7].

Note that at the end of a third gait cycle, the threshold and cadence calculation is
adapted based on the previous detected values, for each leg. In Fig. 4, it is only
represented the threshold for the TO detection for the right limb and the cadence for the
HS for the left leg. At the end of the third cycle, the threshold for the TO detection on
the left leg (th1) goes from 7.8 to 8.1 and remains with this value during the following
three cycles. Also, the calculation of the cadence for HS event was adapted according
to the detection of the events during the three previous gait cycles, going from 116 to
117 samples. Thus, we prove the additivity of the implemented tool to detect gait
through the vertical acceleration with a single-axis.

Lastly, it can also be verified that the HS and TO events, that the signal from the
FSRs detect, are in accordance with the respective events identified through the signal
of the trunk acceleration: the event HS corresponds to a rise in the signal of the FSR
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placed in the heel, which matches with the peak corresponding to the HS in the signal
of the acceleration (1st local maximum); and the event TO corresponds to a decrease in
the signal of the FSR placed in the toe, which beats with the peak corresponding to the
signal of the acceleration (local minimum).

4 Conclusions

A real-time tool for human gait detection from lower trunk acceleration was developed
and validated. The vertical acceleration signal (a single axis) was acquired by imple-
menting an IMU on a waistband.

The proposed algorithm was based on a finite state machine using a set of suitable
decision rules to detect HS, FF, TO, MS and HS for each leg. The algorithm was
validated considering accuracy and time-effectiveness with 7 subjects walking at
comfortable walk speeds on the ground. Results allowed to conclude that the projected
tool is accurate and time-effective in real-time detection. Moreover, we introduce a new
and real-time tool which detects all gait events of the stance-phase, through a single
axis by a wearable system with an IMU.

The adaptability of the algorithm has also been verified, indicating the tool will be
easily adapted to some gait conditions, such as for different speeds and slopes.
Besides that, the implemented algorithm is modular since it can easily be integrated in
another robotic control system for gait rehabilitation.

These are the future challenges. In the future, it will be addressed the validation of
this algorithm considering different environments and conditions. These validations,
besides healthy and (non)-elderly subjects, will include patients with neurological
pathologies as Parkinson’s Disease or Multiple Sclerosis. Thereby, the algorithm
developed will be embedded in a more robust and ergonomic wearable system which
will allow the gait monitoring, a special contribution to clinicians in order to facilitate
diagnostic techniques but above all, allow to trace paths of motor symptoms’
improvements for these devastating diseases.
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