Abstract
Particle-in-cell plasma simulation is an important area of computational physics. The particle-in-cell method naturally allows parallel processing on distributed and shared memory. In this paper we address the problem of load balancing on multicore systems. While being well-studied for many traditional applications of the method, it is a relevant problem for the emerging area of particle-in-cell simulations with account for effects of quantum electrodynamics. Such simulations typically produce highly non-uniform, and sometimes volatile, particle distributions, which could require custom load balancing schemes. In this paper we present a computational evaluation of several standard and custom load balancing schemes for the particle-in-cell method on a high-end system with 96 cores on shared memory. We use a test problem with static non-uniform particle distribution and a real problem with account for quantum electrodynamics effects, which produce dynamically changing highly non-uniform distributions of particles and workload. For these problems the custom schemes result in increase of scaling efficiency by up to 20% compared to the standard OpenMP schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15(5), 055703 (2008)
Vay, J.-L., Bruhwiler, D.L., Geddes, C.G.R., Fawley, W.M., Martins, S.F., Cary, J.R., Cormier-Michel, E., Cowan, B., Fonseca, R.A., Furman, M.A., Lu, W., Mori, W.B., Silva, L.O.: Simulating relativistic beam and plasma systems using an optimal boosted frame. J. Phys: Conf. Ser. 180(1), 012006 (2009)
Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010)
Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V., Meyerov, I.B.: Particle-in-cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016)
Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva, L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion. 55(12), 124011 (2013)
Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014)
Plimpton, S.J., Seidel, D.B., Pasik, M.F., Coats, R.S., Montry, G.R.: A load-balancing algorithm for a parallel electromagnetic particle-in-cell code. Comput. Phys. Commun. 152, 227–241 (2003)
Nakashima, H., Miyake, Y., Usui, H., Omura, Y.: OhHelp: a scalable domain-decomposing dynamic load balancing for particle-in-cell simulations. In: 23rd International Conference on Supercomputing, pp. 90–99. ACM, New York (2009)
Vay, J.-L., Haber, I., Godfrey, B.B.: A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys. 243(15), 260–268 (2013)
Surmin, I., Bashinov, A., Bastrakov, S., Efimenko, E., Gonoskov, A., Meyerov, I.: Dynamic load balancing based on rectilinear partitioning in particle-in-cell plasma simulation. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 107–119. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_12
Germaschewski, K., Fox, W., Abbott, S., Ahmadi, N., Maynard, K., Wang, L., Ruhl, H., Bhattacharjee, A.: The plasma simulation code: a modern particle-in-cell code with patch-based load-balancing. J. Comput. Phys. 318(1), 305–326 (2016)
Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Future Gener. Comput. Syst. 17, 755–765 (2001)
Beck, A., Frederiksen, J.T., Derouillat, J.: Load management strategy for Particle-In-Cell simulations in high energy physics. Nucl. Instrum. Methods Phys. Res. A 829(1), 418–421 (2016)
Nerush, E.N., Kostyukov, I.Y., Fedotov, A.M., Narozhny, N.B., Elkina, N.V., Ruhl, H.: Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett. 106, 035001 (2011)
Ridgers, C.P., Kirk, J.G., Duclous, R., Blackburn, T.G., Brady, C.S., Bennett, K., Arber, T.D., Bell, A.R., et al.: Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions. J. Comput. Phys. 260, 273–285 (2014)
Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.: Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015)
Dawson, J.M.: Particle simulation of plasmas. Rev. Mod. Phys. 55(2), 403–447 (1983)
Baier, V.N., Katkov, V.M., Strakhovenko, V.M.: Electromagnetic Processes at High Energies in Oriented Single Crystals. World Scientific, Singapore (1998)
Bell, A.R., Kirk, J.G.: Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008)
Gonoskov, A., Bashinov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Kim, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A.: Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves. Phys. Rev. X. 7, 041003 (2017)
Vranic, M., Grismayer, T., Fonseca, R.A., Silva, L.O.: Electron-positron cascades in multiple-laser optical traps. Plasma Phys. Control. Fusion 59, 014040 (2016)
Bulanov, S.S., Mur, V.D., Narozhny, N.B., Nees, J., Popov, V.S.: Multiple colliding electromagnetic pulses: a way to lower the threshold of \(e^+e^-\) pair production from vacuum. Phys. Rev. Lett. 104(22), 220404 (2010)
Acknowledgements
The authors (A.L., S.B., A.B., E.E., A.G.) acknowledge the support from the Russian Science Foundation project No. 16-12-10486. We are grateful to Intel Corporation for access to the system used for performing computational experiments presented in this paper. The authors are also grateful to A. Bobyr, S. Egorov, I. Lopatin, and Z. Matveev from Intel Corporation for technical consultations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Larin, A. et al. (2018). Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-78024-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78023-8
Online ISBN: 978-3-319-78024-5
eBook Packages: Computer ScienceComputer Science (R0)