Skip to main content

Parallel Hierarchical Agglomerative Clustering for fMRI Data

  • Conference paper
  • First Online:
  • 1512 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10777))

Abstract

This paper describes three parallel strategies for Ward’s algorithm with OpenMP or/and CUDA. Faced with the difficulty of a priori modelling of elicited brain responses by a complex paradigm in fMRI experiments, data-driven analysis have been extensively applied to fMRI data. A promising approach is clustering data which does not make stringent assumptions such as spatial independence of sources. Thirion et al. have shown that hierarchical agglomerative clustering (HAC) with Ward’s minimum variance criterion is a method of choice. However, HAC is computationally demanding, especially for distance computation. With our strategy, for single subject analysis, a speed-up of up to 7 was achieved on a workstation. For group analysis (concatenation of several subjects), a speed-up of up to 20 was achieved on a workstation.

This work was supported by a research allocation SANTE 2014 of the Conseil régional d’Auvergne (http://www.auvergne.fr/).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham, A., Pedregosa, F., Eickenberg, M., et al.: Machine learning for neuroimaging with scikit-learn. Front. Neuroinformatics 8, 14 (2014)

    Article  Google Scholar 

  2. Calhoun, V.D., et al.: Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum. Brain Mapp. 13, 43–53 (2001)

    Article  Google Scholar 

  3. Chang, D., et al.: Compute pairwise Euclidean distances of data points with GPUs. In: Proceedings of the IASTED International Symposium Computational Biology and Bioinformatics (CBB 2008) (2008)

    Google Scholar 

  4. Cordes, D., Haughton, V.M., Arfanakis, K., et al.: Mapping functionally related regions of brain with functional connectivity MR imaging. Am. J. Neuroradiol. 21, 1636–1644 (2000)

    Google Scholar 

  5. Dash, M., Petrutiu, S., Scheuermann, P.: Efficient parallel hierarchical clustering. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 363–371. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27866-5_47

    Chapter  Google Scholar 

  6. Daubechies, I., et al.: Independent component analysis for brain fMRI does not select for independence. Proc. Nat. Acad. Sci. 106, 10415–10422 (2009)

    Article  Google Scholar 

  7. Gao, X., et al.: Comparison between spatial and temporal independent component analysis for blind source separation in fMRI data. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), vol. 2, pp. 690–692. IEEE (2011)

    Google Scholar 

  8. Golland, Y., et al.: Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia 46, 540–553 (2008)

    Article  Google Scholar 

  9. Gonzalez-Castillo, J., et al.: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proc. Nat. Acad. Sci. 109, 5487–5492 (2012)

    Article  Google Scholar 

  10. Kim, S., Ouyang, M.: Compute distance matrices with GPU. Glob. Sci. Technol. Forum (2012). https://doi.org/10.5176/2251-1652_ADPC12.07

  11. Lance, G.N., Williams, W.T.: A general theory of classificatory sorting strategies 1. Hierarchical systems. Comput. J. 9, 373–380 (1967)

    Article  Google Scholar 

  12. Li, Q., et al.: A chunking method for Euclidean distance matrix calculation on large dataset using multi-GPU, pp. 208–213. IEEE (2010)

    Google Scholar 

  13. Matias Rodrigues, J.F., von Mering, C.: HPC-CLUST: distributed hierarchical clustering for large sets of nucleotide sequences. Bioinformatics 30, 287–288 (2014)

    Article  Google Scholar 

  14. McKeown, M.J., Sejnowski, T.J.: Independent component analysis of fMRI data: examining the assumptions. Hum. Brain Mapp. 6, 368–372 (1998)

    Article  Google Scholar 

  15. Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21, 1313–1325 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Rasmussen, E.M., Willett, P.: Efficiency of hierarchic agglomerative clustering using the ICL distributed array processor. J. Documentation 45, 1–24 (1989)

    Article  Google Scholar 

  18. Thirion, B., et al.: Which fMRI clustering gives good brain parcellations? Front. Neurosci. 8, 167 (2014)

    Article  Google Scholar 

  19. Zhang, Q., Zhang, Y.: Hierarchical clustering of gene expression profiles with graphics hardware acceleration. Pattern Recogn. Lett. 27, 676–681 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélodie Angeletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angeletti, M., Bonny, JM., Durif, F., Koko, J. (2018). Parallel Hierarchical Agglomerative Clustering for fMRI Data. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics