Skip to main content

Continuous and Discrete Models of Melanoma Progression Simulated in Multi-GPU Environment

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Abstract

Existing computational models of cancer evolution mostly represent very general approaches for studying tumor dynamics in a homogeneous tissue. Here we present two very different cancer models: the heterogeneous continuous/discrete and purely discrete one, focusing on a specific cancer type – melanoma. This tumor proliferates in a complicated heterogeneous environment of the human skin. The results from simulations obtained for the two models are confronted in the context of their possible integration into a single multi-scale system. We demonstrate that the interaction between the tissue – represented by both the concentration fields (the continuous model) and the particles (the discrete model) – and the discrete network of blood vessels is the crucial component, which can increase the simulation time even one order of magnitude. To compensate this time lag, we developed GPU/CUDA implementations of the two melanoma models. Herein, we demonstrate that the continuous/discrete model, run on a multi-GPU cluster, almost fifteen times outperforms its multi-threaded CPU implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaplain, M.A., McDougall, S.R., Anderson, A.R.A.: Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)

    Article  Google Scholar 

  2. Ramis-Conde, I., Chaplain, M.A., Anderson, A.R.: Mathematical modelling of cancer cell invasion of tissue. Math. Comput. Model. 47(5), 533–545 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Vittorio, C., Lowengrub, J.: Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010). 278 p

    Google Scholar 

  4. Wodarz, D., Komarova, N.L.: Dynamics of Cancer: Mathematical Foundations of Oncology. World Scientific, Singapore (2014). 514 p

    Book  MATH  Google Scholar 

  5. Frieboes, H.B., Lowengrub, J.S., Wise, S., Zheng, X., Macklin, P., Bearer, E.L., Cristini, V.: Computer simulation of glioma growth and morphology. Neuroimage 37, S59–S70 (2007)

    Article  Google Scholar 

  6. Dzwinel, W., Klusek, A., Vasilyev, O.V.: Supermodeling in simulation of melanoma progression. Procedia Comput. Sci. 80, 999–1010 (2016)

    Article  Google Scholar 

  7. Kłusek, A., Dzwinel, W., Dudek, A.Z.: Simulation of tumor necrosis in primary melanoma. In: Proceedings of the Summer Computer Simulation Conference, pp. 55–61. Society for Computer Simulation International (2016)

    Google Scholar 

  8. Łoś, M., Paszyński, M., Kłusek, A., Dzwinel, W.: Application of fast isogeometric L2 projection solver for tumor growth simulations. Comput. Methods Appl. Mech. Eng. 316, 1257–1269 (2017)

    Article  MathSciNet  Google Scholar 

  9. Dzwinel, W., Klusek, A., Paszynski, M.: A concept of a prognostic system for personalized anti-tumor therapy based on supermodeling. Procedia Comput. Sci. 108C, 1832–1841 (2017)

    Article  Google Scholar 

  10. Dzwinel, W., Wcisło, R., Yuen, D.A., Miller, S.: PAM: particle automata in modeling of multi-scale biological systems. ACM Trans. Model. Comput. Simul. 26(3), A20:1–A20:21 (2016)

    Article  MATH  Google Scholar 

  11. Topa, P., Dzwinel, W.: Using network descriptors for comparison of vascular systems created by tumor-induced angiogenesis. Theor. Appl. Inform. 21(2), 83–94 (2009)

    Google Scholar 

  12. Wcisło, R., Dzwinel, W., Yuen, D.A., Dudek, A.Z.: A new model of tumor progression based on the concept of complex automata driven by particle dynamics. J. Mol. Model. 15(12), 1517–1539 (2009)

    Article  Google Scholar 

  13. Łazarz, R.: Graph-based framework for 3-D vascular dynamics simulation. Procedia Comput. Sci. 101, 416–424 (2016)

    Article  Google Scholar 

  14. Welter, M., Rieger, H.: Physical determinants of vascular network remodeling during tumor growth. Eur. Phys. J. E 33(2), 149–163 (2010)

    Article  Google Scholar 

  15. Rieger, H., Fredrich, T., Welter, M.: Physics of the tumor vasculature: theory and experiment. Eur. Phys. J. Plus 131(2), 1–24 (2016)

    Article  Google Scholar 

  16. Vasilyev, O.V., Kevlahan, N.K.R.: An adaptive multilevel wavelet collocation method for elliptic problems. J. Comput. Phys. 206(2), 412–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lima, E.A.B.F., Oden, J.T., Hormuth, D.A., Yankeelov, T.E., Almeida, R.C.: Selection, calibration, and validation of models of tumor growth. Math. Model. Methods Appl. Sci. 26(12), 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wcisło, R., Gosztyła, P, Dzwinel, W.: N-body parallel model of tumor proliferation. In: Proceedings of the Summer Computer Simulation Conference, pp. 160–167. Society for Computer Simulation International (2010)

    Google Scholar 

  19. Wcisło, R., Gosztyła, P., Dzwinel, W., Yuen, D.A., Czech, W.: Interactive visualization tool for planning cancer treatment. In: Wang, J., Johnsson, L., Chi, C.-H., Shi, Y., Yuen, D. (eds.) GPU Solutions to Multi-scale Problems in Science and Engineering. LNESS, pp. 607–637. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-16405-7_38

    Chapter  Google Scholar 

  20. Worecki, M., Wcisło, R.: GPU enhanced simulation of angiogenesis. Comput. Sci. 13(1), 35 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The work has been supported by the Polish National Science Center (NCN) project 2013/10/M/ST6/00531 and in part by PL-Grid Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Dzwinel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dzwinel, W., Kłusek, A., Wcisło, R., Panuszewska, M., Topa, P. (2018). Continuous and Discrete Models of Melanoma Progression Simulated in Multi-GPU Environment. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics