Skip to main content

Partial Inverses of Complex Block Tridiagonal Matrices

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10777))

Abstract

The algorithm detailed below extends previous work on inversion of block tridiagonal matrices from the Hermitian/symmetric case to the general case and allows for varying sub-block sizes. The blocks of the matrix are evenly distributed across p processes. Local sub-blocks are combined to form a matrix on each process. These matrices are inverted locally and the inverses are combined in a pairwise manner. At each combination step, the updates to the global inverse are represented by updating “matrix maps” on each process. The matrix maps are finally applied to the original local inverse to retrieve the block tridiagonal elements of the global inverse. This algorithm has been implemented in Fortran with MPI. Calculated inverses are compared with inverses obtained using the well known libraries ScaLAPACK and MUMPS. Results are given for matrices arising from DFT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amestoy, P.R., et al.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001). https://doi.org/10.1137/S0895479899358194

    Article  MathSciNet  MATH  Google Scholar 

  2. Amestoy, P.R., et al.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006). https://doi.org/10.1016/j.parco.2005.07.004

    Article  MathSciNet  Google Scholar 

  3. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997). https://doi.org/10.1137/1.9780898719642

    Book  MATH  Google Scholar 

  4. Cauley, S., et al.: A scalable distributed method for quantum-scale device simulation. J. Appl. Phys. 101(12), 123715 (2007). https://doi.org/10.1063/1.2748621

    Article  Google Scholar 

  5. Cauley, S., et al.: Distributed non-equilibrium Green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110(4), 043713 (2011). https://doi.org/10.1063/1.3624612

    Article  Google Scholar 

  6. Hager, W.W.: Updating the inverse of a matrix. SIAM Rev. 31(2), 221–239 (1989). https://doi.org/10.1137/1031049

    Article  MathSciNet  MATH  Google Scholar 

  7. Henderson, H.V., Searle, S.R.: On deriving the inverse of a sum of matrices. SIAM Rev. 23(1), 53–60 (1981). https://doi.org/10.1137/1023004

    Article  MathSciNet  MATH  Google Scholar 

  8. Hurst, D., et al.: NCAlgebra. Version 4.0.5 (2011–2017). https://github.com/NCAlgebra/NC

  9. MUMPS Users Guide. http://mumps.enseeiht.fr/doc/userguide_5.0.1.pdf

  10. Rocha, A.R., et al.: Towards molecular spintronics. Nat. Mater. 4, 335–339 (2005). https://doi.org/10.1038/nmat1349

    Article  Google Scholar 

  11. Rocha, A.R., et al.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006). https://doi.org/10.1103/PhysRevB.73.085414

    Article  Google Scholar 

  12. Rungger, I., Sanvito, S.: Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B 78, 035407 (2008). https://doi.org/10.1103/PhysRevB.78.035407

    Article  Google Scholar 

  13. Wolfram Research, Inc.: Mathematica. Version 10.0 (2014). http://wolfram.com

Download references

Acknowledgements

All calculations were performed on the Boyle cluster maintained by the Research IT, Trinity College Dublin, Ireland, funded by Science Foundation Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Spellacy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spellacy, L., Golden, D. (2018). Partial Inverses of Complex Block Tridiagonal Matrices. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics