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Abstract. With the advent of manycore systems, shared memory par-
allelisation has gained importance in high performance computing. Once
a code is decomposed into tasks or parallel regions, it becomes crucial to
identify reasonable grain sizes, i.e. minimum problem sizes per task that
make the algorithm expose a high concurrency at low overhead. Many
papers do not detail what reasonable task sizes are, and consider their
findings craftsmanship not worth discussion. We have implemented an
autotuning algorithm, a machine learning approach, for a project devel-
oping a hyperbolic equation system solver. Autotuning here is important
as the grid and task workload are multifaceted and change frequently
during runtime. In this paper, we summarise our lessons learned. We
infer tweaks and idioms for general autotuning algorithms and we clar-
ify that such a approach does not free users completely from grain size
awareness.
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1 Introduction

Whenever a code is decomposed into parallel regions or tasks, the number of
tasks determines the concurrency level and hence the code’s potential to scale.
It is common knowledge, however, that tasks must be reasonably computation-
ally intense. Otherwise, the system spends precious time in administering the
concurrency [5, p. 197]. Thus, modern parallelisation paradigms allow users to
prescribe a grain size, a minimal subproblem size for parallel loops, while task-
based approaches group logical tasks into one physical task if separate tasks were
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too lightweight. For plain bulk synchronous processing and non-nested tasks,
finding grain sizes is often done manually via trial-and-error since developers
assume that the size vs. performance curve is convex ([8, p. 37] or [6]).

Today, nested parallel loops perform efficiently—older OpenMP versions some-
times fail to deliver performance here—but yield a high-dimensional grain size
optimisation problem. With the advent of manycores and hierarchical paralleli-
sation, manual search becomes inappropriate. Sophisticated coherence protocols,
performance fluctuations, and cache effects invalidate the convexity assumption
to some degree. Task formalisms with inhomogeneous execution patterns gain
importance. Machine learning (autotuning) which determines both the cost func-
tion and well-suited grain sizes becomes necessary.

This manuscript discusses an autotuning approach that yields reasonable
grain sizes in the ExaHyPE project [2], which combines dynamically adaptive
Cartesian grids [11] with ADER-DG plus local limiting [3]. Support of interact-
ing solvers with varying polynomial order (arithmetic intensity), inhomogeneous
memory access characteristics and hierarchical hardware [10] render the use of
autotuning mandatory. Our goal is two-fold: To present the algorithmic concept
and rationale, and to document experiences on how this algorithm is made ef-
ficient and used efficiently. Our hypothesis is that autotuning never is a pure
black box but that users have to have empirical knowledge to allow autotuning
to integrate into software projects successfully and perform economically. Näıve
coding of autotuning software is often ill-suited for HPC. Both goals interact.

We briefly sketch ADER-DG [3] in Section 2. Its task formulation is straight-
forward. However, the tasks differ significantly in arithmetic intensity, and some
may have largely varying runtime. We then present our autotuning concept (Sec-
tion 3). It tackles the grain size integer optimisation problem [7] parameterised
by real-time measurements via randomised directional search. Emphasis is put on
implementation pitfalls, e.g. the identification of valid real-time measurements.
In Section 4, we discuss the algorithm’s impact on the simulation workflow,
before we present numerical results and close the discussion.

2 Use Case: An ADER-DG Solver

In the underlying ExaHyPE project, we solve hyperbolic PDEs

∂Q

∂t
+∇·F(Q) = 0 on Ω ⊂ Rd, d = 2, 3 (1)

subject to appropriate initial and boundary conditions. Q is the solution, F the
conservative flux, d is the space dimension, ∇·(·) denotes the tensor divergence,
while ∇(·) is the vector gradient. We solve (1) on a dynamically adaptive Carte-
sian grid [11] with ADER-DG [3]. In its simplest form, used here, there are three
phases per time step.

Per grid cell K and time step interval [ta, tb], we first implicitly solve∫
K

∫ tb

ta

θh
∂qh
∂t

dxdt+

∫
K

∫ tb

ta

θh ∇ · F(qh) dxdt = 0. (2)



Fig. 1. Two snapshots from a d = 2 simulation of the Euler equations applied to an
setup where the initial system energy (density) is determined by the project logo.

The space-time predictor qh and the space-time test functions θh are constructed
using tensor products of Lagrange polynomials over Gauss-Legendre points. Fol-
lowing Discontinuous Galerkin, they have compact support on each cell. Equa-
tion (2) yields a discrete fixed-point problem solved by Picard iterations [3]. All
cell operations are independent of each other. The concurrent solves of (2) yield
jumps along the cell faces in the solution qh and its derivatives determining F.

The second phase traverses all faces of the grid and computes a numerical nor-
mal flux G using qh and F from both adjacent cells. We use a Rusanov Riemann
solver. The solves are embarrassingly parallel with low arithmetic intensity.

In the third algorithmic phase, we traverse the cells again and solve∫
K

vh ∆qh dx = −
∫
K

∫ tb

ta

∇vh : F(qh) dxdt+

∫
∂K

∫ tb

ta

vh G dsdt (3)

for ∆qh = qh(tb)−qh(ta). The time step (3) is derived from spatially testing and
partially integrating (1). It can be easily inverted given that the ansatz and test
space yield a diagonal mass matrix, is evaluated per cell, and, hence, parallel.

ADER-DG describes three types of parallel tasks corresponding to phases.
One is computationally heavy while two are lightweight. In our implementa-
tion, we either fuse the three task types within one grid sweep through a task
formalism—one task then comprises a triad of predictor, Riemann solve and
time step—or run through the grid three times and launch them through paral-
lel fors. The runtime of the heavy tasks can typically not been predicted due to
the Picard iteration. There is no single grain size well-suited for all steps.

3 Programming an Autotuning Algorithm

Our autotuning approach picks up concepts from Intel’s TBB [8]. There is a cen-
tral instance, a singleton [4] which is notified by the overall algorithm regarding
which algorithmic phase is to be run next. We call this instance Oracle [6].

Our code runs through the dynamically adaptive Cartesian grid. Whenever
it enters a code section which has a multithreaded implementation using tasks or
contains parallel for loops, it passes the maximum problem size N of the current
subproblem, and an identifier for the current code section to the Oracle. The



Oracle then returns a GrainSize instance. The latter holds information on the
grain size to be used and the number of logical tasks which can be grouped into
one physical task. After the code exits the code section, the GrainSize object
is destroyed again.

The GrainSize object can also be configured to measure the time which
has elapsed since its creation. The measured time is then reported back to the
Oracle at destruction. Proper move constructors ensure this is only done once.

3.1 Algorithmic idea

The Oracle manages a database which stores, per entry, a code section, the
algorithmic step, and further:

Nmax the maximum problem size associated to code section and algorithmic step.
g the grain size used for this problem; g = Nmax indicates that parallelisation

of this code section does not pay off.
∆g the delta from g to the previously studied grain size with g +∆g ≤ Nmax.
Sold the speedup obtained with this previous grain size g +∆g.
t1 the time per problem entity needed without parallelisation.
tg the time per problem entity needed if grain size g is used.

If no entry for these settings exists or N > Nmax, a new database entry with
(Nmax = N, g = C ·N,∆g = N−C ·N,Sold = ∞, . . .) is created. C ∈ {0.5, 1

p} for
p threads are convenient choices as detailed later. The Oracle then determines a
well-suited grain size for the calling code section: For N > g, the invoking code
is instructed to use g as grain size. Otherwise, it runs serially.

Our algorithm realises interval halving similar to [6]: We start with relatively
large g and compare the multithreaded performance to a serial setting. If the
serial version is faster, we deactivate the parallelisation, i.e. we set g = Nmax.
Otherwise, we successively shrink g with steps ∆g until the resulting runtime
starts rising again. Once we observe that g decrements make the runtime rise,
we fall back to the previous choice of g and continue the descending search with
∆g/2.

3.2 Implementation pitfalls

Whilst our approach is realised straightforwardly and similar concepts have been
proposed, we identified tiny details which decide whether it is succesful. One
important detail hereby is the notion of a “valid” timing. We do normalise all
timings w.r.t. time per problem item: if a GrainSize for a problem of size N
measures that the corresponding code lasts t, it reports back a time of N/t to the
Oracle. Working with GrainSize instances ensures that overlapping parallelised
code regions can be handled. Yet, all timings are subject to noise and, more
importantly, any timing is only a characteristic sample if the underlying work per
problem item is not constant. The latter is the case for our nonlinear equation
system solves. Our Oracle thus tracks accumulated times and the number of



measurements. The resulting average time is declared valid by an additional
Boolean flag once a new measurement does not change the average by more
than ε anymore. It is not evaluated for decision making before.

Linux system timers yield useless data if all code regions are paced simulta-
neously. Timer invocations come along with an overhead which quickly pollutes
all timings. Our solution is to introduce a global flag that determines for which
code part a timer is enabled at all. After each grid sweep, this flag is randomly
set to another parallel code fragment known. This way, only one code segment
at a time is surveyed.

If we start to determine t1 first, the algorithm requires a long time to enable
any parallelism at all. As all timings have to converge subject to ε, our simulation
runs in serial for a while if the Oracle first determines the t1 entries in the
database. This is not acceptable in HPC. Therefore, our Oracle randomises
the grain size selection whenever it is invoked for a code fragment for which
timings should be made. For one out of Nmax/g samples, it instructs the invoking
code to run serially and to report back the serial runtime. Otherwise, g shall
be used and the parallel runtime tg is updated. With shrinking grain sizes,
i.e. longer simulation runtimes, fewer serial samples are taken. The sliding t1
updates anticipate that the serial timings of code parts change if parallel regions
are embedded into each other that search for well-suited grain sizes, i.e. have
not converged yet.

Proper constants C determine whether the algorithm exploits a reasonable
number of cores in the first place. For C = 1/2 in the database entry’s initialisa-
tion, the maximum initial concurrency equals two. In a multicore environment,
this is not acceptable. We thus choose C = 0.5 for N < 2p, i.e. for small problems
compared to the thread count p, and otherwise use C = 1/p.

The initial ε choice should take the runtime distribution into account. While
we may expect runtime noise to cancel out for large data sets N and, thus,
that those measurements converge quickly, it is particular important to come up
with working grain sizes for large subproblems quickly as those dominate the
walltime. In our code, we thus scale the initial ε with the total serial runtime of
a source code fragment. If a code fragment requests a grain size first, we ask it
to run serially and to report back the time. We then scale ε with this time: the
longer a source code fragments runs serially the more relaxed ε.

No fixed ε works for all parts of the code. Some tasks in our application solve
nonlinear equation systems. Furthermore, we have nested parallelism. While a
too relaxed choice of ε makes the Oracle accept garbage measurements and
terminate in suboptimal (local) grain size choices, a restrictive ε makes measure-
ments for some code parts never yield valid results. We thus apply widening:
After each grid sweep, we analyse whether the code fragment currently stud-
ied has been supplemented with new timings and whether those timings have
switched on the valid flag for our timings. If this is not the case, we widen the
admissibility constraint by 10%, i.e. multiply ε with 1.1. 10% is a shot from the
hip.



No fixed ε works all the simulation through. We work with large initial ε
to come up with reasonable grain sizes choices quickly. We thus must accept
inaccurate measurements at startup. Furthermore, runtime statistics do vary
significantly as long as the grain sizes of embedded, nested parallel sections
do vary. We thus half ε each time we have found a better grain size g or roll
back to the previous grain size. Our Oracle increases the reliability of all data
successively.

Track good grain sizes per problem size. We have to assume that a good grain
size g depends not only on the algorithmic context but also on the problem size
N . Our approach so far is N -agnostic. While a linear dependency on N might
exist in some cases, we do not assume such a global relation here. Instead, our
approach uses binning. We do search for good grain sizes for Nmax = 2. If the
code requests a grain size for N > Nmax, we recursively add new database
entries for 2Nmax. Per Oracle request, the database entry i is chosen for which
Nmax(i− 1) < N ≤ Nmax(i).

Restart measurements. After each grid sweep, we examine all database entries
subject of search. If we observe that new measurements would have been made
but all grain sizes belonging to the code fragment of interest are fixed, i.e. all
database entries evaluated hold ∆g = 0, we restart the search for these entries
in one out of ten cases. This avoids that we stick to local minima always.

4 Using and Integrating Autotuning

Though we use the autotuning as black box, we found that the user has to remain
aware of their integration into the simulation workflow:

Context-aware autotuning is mandatory. We found our code to react sen-
sitively to machine type, core count, and input data sets. Some data sets may
perform poorly with autotuning settings derived for other data sets. This is likely
an effect of the nonlinear subalgorithms, but certainly holds for many applica-
tions. It is thus important to work with independent autotuning searches per
problem setup rather than one holistic database.

Autotuning for large data sets is problematic in large-scale compute environ-
ments. Autotuning temporarily runs into inefficient parameter choices (if the
grain size becomes too small, e.g.), while large single node parameter studies for
the many required parameter settings might be deemed unsuitable for supercom-
puters or not practical. At the same time, it is important to obtain autotuning
configurations on the actual target machine that later shall host a large-scale
run. We thus augment our binning. Whenever the database can not host an N ,
a new entry for a new Nmax copies over all setting from the next smaller Nmax,
scales them, and continues to work with those parameters. Further, if a valid
parameter configuration is found for some Nmax, our approach extrapolates this
to all database entries with larger Nmax and then makes those restart their
search. This allows us to run small-scale, yet characteristic runs briefly and to
automatically extrapolate reasonable grain size to large production runs.



Accuracy improves over time, i.e. the more samples the more reliable the
measurement data. It is thus a natural choice to dump and reload autotuning
properties. It further is very reasonable to archive them alongside the simulation
data. Simulation re-runs then do not start autotuning searches from scratch but
reuse performance knowledge.

We “sacrifice” only one node in a parallel environment. Autotuning intro-
duces overhead, it has to be used carefully in large-scale simulations where all
overheads have to be multiplied with the number of nodes used. We thus disable
the autotuning’s search on all MPI ranks besides one. All others read in the auto-
tuning properties from a file and stick to those. The one rank tracking runtimes
dumps all insight into a property file at the end of the simulation from where
this knowledge becomes available to all other ranks in the next simulation. More
sophisticated techniques may pass the responsibility for measurements from one
rank to another throughout the simulation and propagate knowledge on-the-fly.

5 Computational Evidence

We start our computational exercises with the performance model

tg = (1− f̂) · t1

min
(⌊

N
g

⌋
, p
) + f̂ · t1 + h ·

⌈
N

g

⌉
with f̂ = f +

N mod g

N
(1− f)

which extends Amdahl’s law [1] by a task administration overhead h scaling
linearly with the number of tasks. f ∈ [0, 1] is the code fraction not benefiting

from multithreading at all. It enters the model through f̂ which anticipates that
problems might not be decomposed exactly.
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Fig. 2. Normalised time tg/t1 according to our performance model for Nmax = 8, f =
0.1, C = 10−1 (left) and Nmax = 64, f = 0.2, C = 10−2 (right).

Our simplistic model relying on invariant t1 illustrates (Fig. 2) that one has
to be careful not to choose the grain size too small to avoid overhead, while too



large grain sizes do not yield good speedup. This is common knowledge. Different
to textbooks [8] our speedups however do not develop smoothly but exhibit a
non-convex step pattern. Finally, it might be reasonable not to choose a grain
size for small problems that does keep all threads p busy and thus to spare cores.

The performance model motivates our decision to trigger the search for good
grain sizes with half the maximum grain size for small problems and 1/p·Nmax for
bigger problems. As the difference between two local minima becomes the smaller
the smaller g, it is reasonable to start with rather inaccurate time measurements
(noise for large differences can be expected not to pollute any conclusion) and to
increase the accuracy successively throughout the search. From our model, we
derive that good autotuning searches for a different grain size per core number
and problem size: it is reasonable to apply the binning.

Our runtime experiments were run on SuperMUC hosting Haswell Xeon
E5-2697 v3 processors with 28 cores and 2.6 GHz base clock. All shared memory
tests rely on Intel’s TBB [8]. We studied five grain size selection strategies:

serial runs provide the measurement baseline and normalise all runtimes.

dummy is a choice of grain sizes per code part that does not anticipate the
algorithmic context. We manually tuned it to yield good performance in
many iterations.

autotuning-with-finest-grid runs the autotuning strategy.

autotuning-from-coarse-grid runs a cascade of autotuning experiments: it
starts with a very coarse mesh, runs the autotuning, dumps the grain sizes
identified, and then continues with the next finer mesh. We report only on
the final run where the finest mesh sizes matches the other setups.

autotuning-from-coarse-grid-without-learning takes the final dump of
the cascading autotuning and reruns the test again but switches off the
learning, i.e. no time measurements are done and grain sizes remain invariant.
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Fig. 3. Cost per time step for d = 2 Euler simulations where all three algorithmic
steps are fused and we use polynomial order p = 3 (left) against a code where the three
algorithmic phases are ran after each other with p = 9 (right).



Comparing cascading autotuning with the experiment switching off all mea-
surements (Fig. 3) reveals that there is a significant overhead to do real-time
measurements, and that there is a price to pay for the sliding updates of t1.
Once this overhead is removed, our autotuning can cope with a manual (and la-
borious) grain size selection. It thus makes sense to turn off autotuning wherever
possible, notably on most MPI ranks.

Autotuning starting on the green field for a large problem does yield some
valid grain sizes but the search process suffers from runtime spikes. The spikes
result from unfortunate grain size choices that the autotuning tries and then
discards. If we start autotuning on a coarse grid and then successively extrapolate
the grain sizes to finer grids, we can remove the majority of these peaks.
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Fig. 4. Cost per time step for a d = 2 simulation of a shock where the ADER-DG
solution is augmented with a Finite Volume limiter. p = 3 (left) vs. p = 9 (right) while
all phases are fused into one grid sweep.

If we run the three ADER-DG phases consecutively, our autotuning requires
longer to identify grain sizes able to compete with a manual optimisation (more
than 60 time steps). It particularly struggles for the two arithmetically cheap
phases. It is thus advantageous to try to fuse algorithmic phases—which can be
read as a task fusion—to end up with computationally heavy individual steps.

We observe that our initial choice of C ∈ {0.5, 1/p} (C = 1/p is the OpenMP
default for static partitioning) is reasonable. Already in the first iteration where
the autotuning is unaware of Nmax, we exploit the multicore architecture.

Once we switch from ADER-DG to limited ADER-DG (Fig. 4), autotuning
becomes particularly important. Here, an additional Finite Volume scheme is
interwoven into ADER-DG, eliminating numerical oscillations. As a consequence,
the runtimes per cell start to vary greatly and it is hard to find globally valid
good grain sizes. Our extrapolating approach is no longer robust and requires
appropriate restart mechanisms.

The Oracle’s internal decisions are not visible from the plots. It first tries
to remove parallelism from the code where parallel overhead increases the wall-
time. Only afterwards, it starts to tune the grain sizes for the scaling regions.



Non-scaling features may significantly perturb the timings of the scaling regions
and, thus, the Oracle’s decision making.

6 Conclusion

We describe an autotuning algorithm and summarise realisation decisions which
made, throughout the development, the difference of whether the autotuning
succeeds or not. Though the common perception of a convex runtime curve may
be oversimplified, our autotuning yields proper grain size choices.

Our autotuning approach assumes codes which are completely decomposed
into tasks and use parallel for loops wherever possible. Our algorithm first
switches off parallelism where it does not pay off. Only then, it starts searching
for optimal grain sizes for the remaining code sections. Such an approach, assum-
ing omnipresent parallelism, seems to be a reasonable pattern for future code
development. In terms of implementation difficulty, we regard it to be favourable
to successive automated induction of concurrency.

An interesting next step is to augment the grain size optimisation with an
additional constraint w.r.t. employed cores. We see that we can, at little loss of
efficiency, for many setups reduce the number of used cores. For codes deploying
multiple MPI ranks per node, other ranks then can grab these freed cores [9].
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