Skip to main content

Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware for Memory-Bound Problems: A Case Study of Ab Initio Calculations with VASP

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Abstract

Nowadays, the wide spectrum of Intel Xeon processors is available. The new Zen CPU architecture developed by AMD has extended the number of options for x86_64 HPC hardware. Moreover, Nvidia has released a custom 64-bit Denver architecture based on the ARM instruction set. This large number of options makes the optimal CPU choice for perspective HPC systems not a straightforward procedure. Such a co-design procedure should follow the requests from the end-users community. Modern computational materials science studies are among the major consumers of HPC resources worldwide. The VASP code is perhaps the most popular tool for these research. In this work, we discuss the benchmark metric and results based on a VASP test model that give us the possibility to compare different hardware and to distinguish the best options with respect to energy-to-solution criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). http://link.aps.org/doi/10.1103/PhysRevB.47.558

  2. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994). http://link.aps.org/doi/10.1103/PhysRevB.49.14251

  3. Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computat. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0. http://www.sciencedirect.com/science/article/pii/0927025696000080

  4. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). http://link.aps.org/doi/10.1103/PhysRevB.54.11169

  5. Bethune, I.: Ab initio molecular dynamics. In: Introduction to Molecular Dynamics on ARCHER (2015). https://www.archer.ac.uk/training/course-material/2015/06/MolDy_Strath/AbInitioMD.pdf

  6. Hutchinson, M.: VASP on GPUs. When and how. In: GPU Technology Theater, SC 2015 (2015). http://images.nvidia.com/events/sc15/pdfs/SC5107-vasp-gpus.pdf

  7. Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM on KNL using dual-socket Ivy Bridge nodes on Cray XC30. In: Proceedings of Cray User Group – 2016 (2016). https://cug.org/proceedings/cug2016_proceedings/includes/files/pap111.pdf

  8. Boggs, D., Brown, G., Tuck, N., Venkatraman, K.S.: Denver: Nvidia’s first 64-bit arm processor. IEEE Micro 35(2), 46–55 (2015). https://doi.org/10.1109/MM.2015.12

    Article  Google Scholar 

  9. Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “new normal” for computer architecture. Comput. Sci. Eng. 15(6), 16–26 (2013). https://doi.org/10.1109/MCSE.2013.95

    Article  Google Scholar 

  10. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: Perfexpert: an easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington, DC (2010). https://doi.org/10.1109/SC.2010.41

  11. Rane, A., Browne, J.: Enhancing performance optimization of multicore/multichip nodes with data structure metrics. ACM Trans. Parallel Comput. 1(1), 3:1–3:20 (2014). http://doi.acm.org/10.1145/2588788

  12. Stanisic, L., Mello Schnorr, L.C., Degomme, A., Heinrich, F.C., Legrand, A., Videau, B.: Characterizing the performance of modern architectures through opaque benchmarks: pitfalls learned the hard way. In: IPDPS 2017–31st IEEE International Parallel & Distributed Processing Symposium (RepPar Workshop), Orlando, USA (2017). https://hal.inria.fr/hal-01470399

  13. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve ways to tell the masses when reporting performance results. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 73:1–73:12. ACM, New York (2015). https://doi.org/10.1145/2807591.2807644

  14. Scogland, T., Azose, J., Rohr, D., Rivoire, S., Bates, N., Hackenberg, D.: Node variability in large-scale power measurements: perspectives from the Green500, Top500 and EEHPCWG. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 74:1–74:11. ACM, New York (2015). http://doi.acm.org/10.1145/2807591.2807653

  15. Calore, E., Schifano, S.F., Tripiccione, R.: Energy-performance tradeoffs for HPC applications on low power processors. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 737–748. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2_59

    Chapter  Google Scholar 

  16. Rojek, K., Ilic, A., Wyrzykowski, R., Sousa, L.: Energy-aware mechanism for stencil-based MPDATA algorithm with constraints. Concurr. Comput.: Pract. Exp. e4016-n/a (2016). http://dx.doi.org/10.1002/cpe.4016.Cpe.4016

  17. Luijten, R.P., Cossale, M., Clauberg, R., Doering, A.: Power measurements and cooling of the DOME 28nm 1.8GHz 24-thread ppc64 \(\mu \)Server compute node. In: 2015 International Conference on IC Design Technology (ICICDT), pp. 1–4 (2015). https://doi.org/10.1109/ICICDT.2015.7165919

  18. Nikolskiy, V., Stegailov, V.: Floating-point performance of ARM cores and their efficiency in classical molecular dynamics. J. Phys.: Conf. Ser. 681(1), 012,049 (2016). http://stacks.iop.org/1742-6596/681/i=1/a=012049

  19. Nikolskiy, V.P., Stegailov, V.V., Vecher, V.S.: Efficiency of the Tegra K1 and X1 systems-on-chip for classical molecular dynamics. In: 2016 International Conference on High Performance Computing Simulation (HPCS), pp. 682–689 (2016). https://doi.org/10.1109/HPCSim.2016.7568401

  20. Vecher, V., Nikolskii, V., Stegailov, V.: GPU-accelerated molecular dynamics: energy consumption and performance. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 78–90. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55669-7_7

    Chapter  Google Scholar 

  21. Cytowski, M.: Best Practice Guide – IBM Power 775. PRACE, November 2013. http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-IBM-Power-775.pdf

  22. Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quantum and classical molecular dynamics. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 469–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_45

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. Maciej Cytowski and Dr. Jacek Peichota (ICM, University of Warsaw) for the data on the VASP benchmark [21].

The authors acknowledge Joint Supercomputer Centre of Russian Academy of Sciences (http://www.jscc.ru) and Shared Resource Center “Far Eastern Computing Resource” IACP FEB RAS (http://cc.dvo.ru) for the access to the supercomputers MVS10P, MVS1P5 and IRUS17.

The work was supported by the grant No. 14-50-00124 of the Russian Science Foundation. A part of the equipment used in this work was purchased with the financial support of MIPT and HSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Stegailov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stegailov, V., Vecher, V. (2018). Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware for Memory-Bound Problems: A Case Study of Ab Initio Calculations with VASP. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics