Abstract
With the explosive growth of indoor data traffic, the indoor communication performance has become a popular research area in the future wireless network. Femtocells have been deployed to improve the network capacity and coverage in indoor environment. The complex building topology and user behavior may result in frequent handover and transmission interruption. Thus, we propose a mobility prediction scheme to optimize the handoff process in indoor environment using Hidden Markov Model (HMM). In this scheme, we set up the prediction model to find the optimized handoff Femtocell Access Point (FAP). A typical case of office scenario is studied as example. Considering the user behaviors, we divide the whole prediction time into several periods according to the working schedule and study the movement characteristics in each period. With the complex building topology, we generate all possible trajectories and predict the user’s movement paths in these trajectories to improve the prediction accuracy. With the wall penetration loss influence, we revise the probability of connecting to FAP at the positions where have walls between FAP and connecting point. Eventually, we propose a mobility prediction scheme using HMM to forecast the next optimized handoff FAP. Simulation results show that the proposed scheme achieves a better performance compared with exiting schemes in terms of the handoff numbers and dwell time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wen, J., Li, V.O.K.: Big-data-enabled software-defined cellular network management. In: 2016 International Conference on Software Networking (ICSN), pp. 1–5, May 2016
CISCO: Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021, February 2017. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
Chen, L., Yu, F.R., Ji, H., Liu, G., Leung, V.C.M.: Distributed virtual resource allocation in small-cell networks with full-duplex self-backhauls and virtualization. IEEE Trans. Veh. Technol. 65(7), 5410–5423 (2016)
Knisely, D.N., Yoshizawa, T., Favichia, F.: Standardization of femtocells in 3GPP. IEEE Commun. Mag. 47(9), 68–75 (2009)
Nasrin, W., Xie, J.: A self-adaptive handoff decision algorithm for densely deployed closed-group femtocell networks. In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 390–398, June 2015
Zhu, X., Li, M., Xia, W., Zhu, H.: A novel handoff algorithm for hierarchical cellular networks. China Commun. 13(8), 136–147 (2016)
Liu, G., Maguire Jr., G.: A class of mobile motion prediction algorithms for wireless mobile computing and communications. Mobile Netw. Appl. 1(2), 113–121 (1996)
Cheikh, A.B., Ayari, M., Langar, R., Pujolle, G., Saidane, L.A.: Optimized handoff with mobility prediction scheme using HMM for femtocell networks. In: 2015 IEEE International Conference on Communications (ICC), pp. 3448–3453, June 2015
Laursen, T., Pedersen, N.B., Nielsen, J.J., Madsen, T.K.: Hidden Markov model based mobility learning fo improving indoor tracking of mobile users. In: 2012 9th Workshop on Positioning, Navigation and Communication, pp. 100–104, March 2012
Bauer, K., Anderson, E.W., McCoy, D., Grunwald, D., Sicker, D.C.: Crawdad dataset cu/rssi, May 2009. http://crawdad.org/cu/rssi/20090528
Rabiner, L., Juang, B.: An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)
Acknowledgement
This paper is jointly sponsored by the National Natural Science Foundation of China for the Youth (Grant No.61501047) and the National Natural Science Foundation of China (Grant No.61671088).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Yang, P., Li, X., Ji, H., Zhang, H. (2018). Handoff Prediction for Femtocell Network in Indoor Environment Using Hidden Markov Model. In: Wang, L., Qiu, T., Zhao, W. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Systems. QShine 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-78078-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-78078-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78077-1
Online ISBN: 978-3-319-78078-8
eBook Packages: Computer ScienceComputer Science (R0)