Abstract
Lifted Relational Neural Networks (LRNNs) describe relational domains using weighted first-order rules which act as templates for constructing feed-forward neural networks. While previous work has shown that using LRNNs can lead to state-of-the-art results in various ILP tasks, these results depended on hand-crafted rules. In this paper, we extend the framework of LRNNs with structure learning, thus enabling a fully automated learning process. Similarly to many ILP methods, our structure learning algorithm proceeds in an iterative fashion by top-down searching through the hypothesis space of all possible Horn clauses, considering the predicates that occur in the training examples as well as invented soft concepts entailed by the best weighted rules found so far. In the experiments, we demonstrate the ability to automatically induce useful hierarchical soft concepts leading to deep LRNNs with a competitive predictive power.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blockeel, H., Uwents, W.: Using neural networks for relational learning. In: ICML 2004 Workshop on Statistical Relational Learning and Its Connection to Other Fields, pp. 23–28 (2004)
Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25
Cohen, W.W.: TensorLog: a differentiable deductive database. arXiv preprint arXiv:1605.06523 (2016)
Davis, J., Burnside, E., de Castro Dutra, I., Page, D., Costa, V.S.: An integrated approach to learning Bayesian networks of rules. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 84–95. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_13
Dinh, Q.T., Exbrayat, M., Vrain, C.: Generative structure learning for Markov logic networks based on graph of predicates. In: IJCAI Proceedings of International Joint Conference on Artificial Intelligence, vol. 22, p. 1249 (2011)
Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture (1989)
Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3
Kok, S., Domingos, P.: Learning the structure of Markov logic networks. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 441–448 (2005)
Landwehr, N., Kersting, K., Raedt, L.D.: Integrating naive bayes and FOIL. J. Mach. Learn. Res. 8, 481–507 (2007)
Landwehr, N., Passerini, A., De Raedt, L., Frasconi, P.: kFOIL: learning simple relational kernels. In: AAAI 2006: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 389–394. AAAI Press (2006)
Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1), 49–73 (2015)
Opitz, D.W., Shavlik, J.W.: Heuristically expanding knowledge-based neural networks. In: IJCAI, pp. 1360–1365 (1993)
Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical informatics. Neural Netw. 18(8), 1093–1110 (2005)
Rocktäschel, T., Riedel, S.: Learning knowledge base inference with neural theorem provers. In: NAACL Workshop on Automated Knowledge Base Construction (AKBC) (2016)
Šourek, G., Aschenbrenner, V., Železný, F., Kuželka, O.: Lifted relational neural networks. In: Proceedings of the NIPS Workshop on Cognitive Computation: Integrating Neural and Symbolic Approaches (2015)
Šourek, G., Aschenbrenner, V., Železný, F., Kuželka, O.: Lifted relational neural networks. arXiv preprint (2015). http://arxiv.org/abs/1508.05128
Šourek, G., Manandhar, S., Železný, F., Schockaert, S., Kuželka, O.: Learning predictive categories using lifted relational neural networks. In: Cussens, J., Russo, A. (eds.) ILP 2016. LNCS (LNAI), vol. 10326, pp. 108–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63342-8_9
Acknowledgements
GŠ, MS and FŽ acknowledge support by project no. 17-26999S granted by the Czech Science Foundation. This work was done while OK was with Cardiff University and supported by a grant from the Leverhulme Trust (RPG-2014-164). SS is supported by ERC Starting Grant 637277. Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Šourek, G., Svatoš, M., Železný, F., Schockaert, S., Kuželka, O. (2018). Stacked Structure Learning for Lifted Relational Neural Networks. In: Lachiche, N., Vrain, C. (eds) Inductive Logic Programming. ILP 2017. Lecture Notes in Computer Science(), vol 10759. Springer, Cham. https://doi.org/10.1007/978-3-319-78090-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-78090-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78089-4
Online ISBN: 978-3-319-78090-0
eBook Packages: Computer ScienceComputer Science (R0)