Abstract
In the context of the introduction of intermittent renewable energies, we propose to optimize the main variables of the control rods of a nuclear power plant to improve its capability to load-follow. The design problem is a black-box combinatorial optimization problem with expensive evaluation based on a multi-physics simulator. Therefore, we use a parallel asynchronous master-worker Evolutionary Algorithm scaling up to thousand computing units. One main issue is the tuning of the algorithm parameters. A fitness landscape analysis is conducted on this expensive real-world problem to show that it would be possible to tune the mutation parameters according to the low-cost estimation of the fitness landscape features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)
Arnaud, G., Do, J.-M., Lautard, J.-J., Baudron, A.-M., Douce, S.: Selection combinatory algorithm for loading pattern design of light water reactor with two levels of heterogeneity. In: Proceedings of ICAPP (2011)
Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Problem features vs. algorithm performance on rugged multi-objective combinatorial fitness landscapes. Evolutionary Computation (2016)
de Moura Meneses, A.A., Gambardella, L.M., Schirru, R.: A new approach for heuristics-guided search in the in-core fuel management optimization. Prog. Nucl. Energy 52, 339–351 (2010)
Dubreuil, M., Gagne, C., Parizeau, M.: Analysis of a master-slave architecture for distributed evolutionary computations. IEEE Trans. Syst. Man Cybern. Part B 36, 229–235 (2006)
Dumont, O.: Ademe energie 2030: production d’énergies renouvelables. Technical report, Ademe (2012)
Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 19–46. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69432-8_2
Grard, H.: Physique, fonctionnement et sûreté des REP. EDP Sciences (2014)
Hordijk, W.: A measure of landscapes. Evol. Comput. 4(4), 335–360 (1996)
Kim, J.H., Park, S.H., Na, M.G.: Design of a model predictive load-following controller by discrete optimization of control rod speed for PWRs. Ann. Nucl. Energy 71, 343–351 (2014)
Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K.: Towards landscape-aware automatic algorithm configuration: preliminary experiments on neutral and rugged landscapes. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 215–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_15
Lokhov, A.: Technical and economic aspect of load following with nuclear power plants. In: Nuclear Energy Agency. OECD, June 2011
López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The Rpackageirace package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles (2011)
Muniglia, M., Do, J.-M., Le Pallec, J.-C., Grard, H., Verel, S.V., David, S.: A multi-physics PWR model for the load following. In: ICAPP (2016)
Na, M.G., Hwang, I.J., Lee, Y.J.: Design of a fuzzy model predictive power controller for pressurized water reactors. IEEE Trans. Nucl. Sci. 53(3), 1504–1514 (2006)
Pereira, C.M., Lapa, C.M.: Coarse-grained parallel genetic algorithm applied to a nuclear reactor core design optimization problem. Ann. Nucl. Energy 30, 555–565 (2003)
Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
Sacco, W.F., De Oliveira, C.R., Pereira, C.M.: Two stochastic optimization algorithms applied to nuclear reactor core design. Prog. Nucl. Energy 48, 525–539 (2006)
Sacco, W.F., Lapa, C.M., Pereira, C.M., Filho, H.A.: A metropolis algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization. Prog. Nucl. Energy 50, 15–21 (2008)
Schneider, D., Dolci, F., Gabriel, F., Palau, J.-M.: Apollo3\(^{\textregistered }\): CEA/DEN deterministic multi-purpose code for reactor physics analysis. In: PHYSOR (2016)
Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics. LNP, vol. 585, pp. 183–204. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45692-9_10
Vanneschi, L., Tomassini, M., Collard, P., Vérel, S., Pirola, Y., Mauri, G.: A comprehensive view of fitness landscapes with neutrality and fitness clouds. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 241–250. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71605-1_22
Weinberger, E.D.: Local properties of Kauffman’s NK model, a tuneably rugged energy landscape. Phys. Rev. A 44, 6399–6413 (1991)
Wessing, S., Rudolph, G., Menges, D.A.: Comparing asynchronous and synchronous parallelization of the SMS-EMOA. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 558–567. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_52
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Muniglia, M., Verel, S., Le Pallec, JC., Do, JM. (2018). A Fitness Landscape View on the Tuning of an Asynchronous Master-Worker EA for Nuclear Reactor Design. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2017. Lecture Notes in Computer Science(), vol 10764. Springer, Cham. https://doi.org/10.1007/978-3-319-78133-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-78133-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78132-7
Online ISBN: 978-3-319-78133-4
eBook Packages: Computer ScienceComputer Science (R0)