Skip to main content

Quantum Interference and Shape Detection

  • Conference paper
  • First Online:
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10746))

  • 1053 Accesses

Abstract

We address the problem of shape detection in settings where large shape deformations and occlusions occur with clutter noise present. We propose a quantum model for shapes by applying the quantum path integral formulation to an existing energy model for shapes (a Bayesian-derived cost function). We show that the classical statistical method derived from the quantum method, via the Wick rotation technique, is a voting scheme similar to the Hough transform. The quantum phenomenon of interference drives the quantum method for shape detection to excel, compared to the corresponding classical statistical method or the statistical Bayesian (energy optimization) method. To empirically demonstrate our approach, we focus on simple shapes: circles and ellipses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feynman, R., Hibbs, A.: Quantum Mechanics and Path Integrals: Emended by D. F. Steyer. Dover Publications, New York (2012)

    MATH  Google Scholar 

  2. Feynman, R.: The Feynman Lectures on Physics, vol. 3. Addison Wesley, Boston (1971)

    Google Scholar 

  3. Wick, G.C.: Properties of Bethe-Salpeter wave functions. Phys. Rev. 96, 1124–1134 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hough, P.V.C.: Machine analysis of bubble chamber pictures. In: 2nd International Conference on High-Energy Accelerators and Instrumentation, Proceedings Geneva, Switzerland, pp. 554–558 (1959)

    Google Scholar 

  5. Yuille, A.L.: Energy functions for early vision and analog networks. Biol. Cybern. 61(2), 115–123 (1989)

    Article  Google Scholar 

  6. Emms, D., Wilson, R., Hancock, E.: Graph matching using the interference of continuous-time quantum walks. Pattern Recogn. 42, 985–1002 (2009)

    Article  MATH  Google Scholar 

  7. Emms, D., Wilson, R., Hancock, E.: Graph matching using the interference of discrete-time quantum walks. Image Vis. Comput. 27, 934–949 (2009)

    Article  MATH  Google Scholar 

  8. Rangarajan, A., Gurumoorthy, K.S.: A Schrödinger wave equation approach to the eikonal equation: application to image analysis. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 140–153. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03641-5_11

    Chapter  Google Scholar 

  9. Gurumoorthy, K.S., Rangarajan, A., Banerjee, A.: The complex wave representation of distance transforms. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 413–427. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23094-3_30

    Google Scholar 

  10. Cicconet, M., Geiger, D., Werman, M.: Complex-valued Hough transforms for circles. In: Proceedings, 2015 IEEE International Conference on Image Processing (ICIP), pp. 2801–2804, September 2015

    Google Scholar 

  11. Witkin, A.P.: Scale-space filtering. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, pp. 1019–1022 (1983)

    Google Scholar 

  12. Lindeberg, T.: Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 2(21), 224–270 (1994). (Supplement on Advances in Applied Statistics: Statistics and Images: 2)

    Google Scholar 

  13. Siddiqi, K., Kimia, B.B.: A shock grammar for recognition. In: Computer Vision and Pattern Recognition, Proceedings CVPR 1996 (1996)

    Google Scholar 

Download references

Acknowledgments

The first author thanks the National Science Foundation for the Award Number 1422021, which partially supported this research. Both authors wish to thank Dan Pinkel for numerous interesting conversations about these ideas and methods and the anonymous reviewers for valued feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi M. Kedem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geiger, D., Kedem, Z.M. (2018). Quantum Interference and Shape Detection. In: Pelillo, M., Hancock, E. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2017. Lecture Notes in Computer Science(), vol 10746. Springer, Cham. https://doi.org/10.1007/978-3-319-78199-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78199-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78198-3

  • Online ISBN: 978-3-319-78199-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics